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Abstract - The MINIX operating system was extended with 
real-time services, ranging from A/D drivers to new 
scheduling algorithms and statistics collection. A testbed was 
constructed to tests several sensor replication techniques in 
order to implement and verify several robust sensing 
algorithms. As a result, new services enhancing fault 
tolerance for replicated sensors were also provided within the 
kernel. The resulting OS offers new features such as real-time 
task management (for both periodic or aperiodic tasks), clock 
resolution handling, and sensor replication manipulation.  
 
 Index Terms⎯Fault Tolerance, Operating Systems, Real-
time Systems, Sensing Algorithms, Sensor Replication. 

1. INTRODUCTION 

 Computing systems are already among almost any human 
activities. In particular, real-time systems (those where the 
correctness depends not only on the results obtained, but also 
on the time at which these results are produced) are present in 
more and more complex tasks every day, where an error can 
lead to catastrophic situations (even with danger to human 
life). Therefore, fault tolerance capabilities for this kind of 
systems are critical to their success during their lifetime cycle. 
Although fault tolerance strategies are being developed since 
a long time ago, they were oriented mainly to distributed 
systems.  
   
 This kind of systems span from microcontrollers in 
automobile engines to very complex applications, such as 
aircraft flight control or process control in manufacturing 
plants. Nonetheless, most real-time systems consist of a 
control system and a controlled system. Information about the 
environment is provided via sensors, and the system can in 
turn modify the state of the environment through actuators. 
Let's take for example a simple manufacturing process: a 
water tank must have its temperature and pH within a certain 
range; this is a basic control process (see Fig. 1). The 
environment is the controlled system, and a computer must 
keep the temperature and balance the pH. It is necessary that 
the control system monitors the environment, using sensors (a 
thermometer and a pH-meter in this case). The control system 
changes the environment by means of another type of 

components: actuators (for the example, a heater and an acid 
injector). 
 
 A control process can follow these steps in a repetitive 
manner, with time constraints applied: 
 Sensing: real world status must be known (by measuring 
temperature and pH value) 
 Controlling: real world values must be checked. 
Temperature and pH should be within certain limits (lower 
and upper). 
 Acting: real world status may need to be changed. Turning 
the heater on to raise the temperature until the required value 
is reached. 
 

 
Fig. 1 - Scheme for a basic control process 

 As many other computer applications, real-time systems 
are usually built by using the services offered by an operating 
system. In this case, the services provided should be slightly 
different than the case for traditional applications. It should 
provide basic support for predictability, satisfaction of real-
time constraints, fault tolerance and integration between time-
constrained resources and scheduling. When real-time 
systems are built using the services of a programming 
environment, the timing constraints of the system are usually 
attached to processes (or tasks). The tasks have timing 
constraints, called deadlines, that cannot be missed. Failure in 
meeting the tasks’ deadlines can lead to catastrophic 
consequences. In the previous example, letting the tank's 
content to become acid would be a great economic lost. 
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 The goal on designing and building a fault tolerant system 
is to guarantee that the system will continue working as a 
whole, even in the presence of faults. Sensors and actuators 
(hardware) and tasks (software) are potential sources of 
failures within a real-time system. The service delivered by a 
system is the system behavior as it is perceived by another 
special system(s) interacting with the considered system: its 
user(s) [1]. 
 
 Using this definition, it can be said that a system faults 
when it fails to deliver the service(s) it is intended to. 
Depending on the system's complexity and relevance, this 
failure can be tolerated (statistical erroneous data from a 
census, that can be recalculated again later) or can lead to a 
catastrophic accident (an air traffic control system). The 
broader use of computers in critical missions forced the need 
to improve the capacity of avoiding and tolerate faults. A 
failure is an error, due perhaps to a design problem, 
manufacturing, programming, a human error or 
environmental conditions. A component failure generally 
does not lead straightly to the failure of the whole system, but 
it may be the beginning of a number of failures ending in the 
system's fault. 
 
 Failures can occur due to errors in the hardware (a short-
circuit) or errors in the software (using '!=' instead of '=' in a 
C program). The first case, known as hardware fault 
tolerance, is well-understood, to the point of being an 
Engineering discipline. Several reasons can be cited: 
• The physics of hardware components, such as silicon, 

are well understood. The complexity of large hardware 
designs is several orders of magnitude less than large 
software systems. 

• Given the costs associated with mass production, 
hardware engineers produce carefully thought out 
specification along with functional tests that can be 
applied in order to test units coming off the assembly 
line. 

• Electronic components are more reliable year after 
year. Values of MTBF (Mean Time Between Faults) 
have raised continuously in the last decades. No one 
can imagine a hard disk with faulty sectors these days. 
Fault tolerant systems are expected to go on (survive) 
even with component faults, not to rely on the low 
probability of them to fail.  

 
Timing faults can be classified in: 
 Transient  they happen once and then disappear. If the 

task or action is repeated, the fault does not 
occur again. 

 Intermittent   they appear, disappear, and are present 
again. This condition makes them hard to 
diagnose. 

 Permanent faults that are present until the failed 
component is replaced or repaired. 

 

 This work is devoted to present the efforts in building a 
programming environment for real-time systems. The work is 
based on a modification of the Minix operating system, so as 
the results can be used with educational purposes. Sensor 
replication schemes were included in the kernel, providing 
fault tolerance when sensing values from the real world. 
 
 The present document is organized as follows: Section 2 
describes the extensions done to the RT-MINIX operating 
system. Section 3 is devoted to fault tolerance capabilities 
related with sensing algorithms and sensor replication; while 
sensing algorithms are presented in Section 4. Both static and 
dynamic tests are discussed in Sections 5.  Sections 6 and 7 
explain current applications and work in progress using RT-
MINIX. Finally, conclusions and future work proposals are 
listed in Section 8. 

2. REAL-TIME EXTENSIONS TO MINIX 

 MINIX [2] (name that stands for Mini-UNIX), is a 
complete, timesharing, multitasking operating system. 
Inspired by UNIX, it was written from scratch by A. 
Tannenbaum. Though it is copyrighted, the source has been 
made widely available to universities for study and research 
in computer science courses. 
 
 Existing real-time operating systems (RTOS) can be 
divided in two categories: 
• Systems implemented using somewhat stripped down 

and optimized (or specialized) versions of conventional 
timesharing OS. 

• Systems starting from scratch, focusing on predictability 
as a key design feature. 

 
 Research projects falling in the first category include 
KURT [3], RT Mach [4] and RT-Linux [5]. Operating 
systems like Spring [6], Maruti [7] and YARTOS [8] were 
developed using the second approach. Though several 
commercially available systems, including LynxOS [9] and 
QNX [10], offer real-time performance and services to 
applications, they are too costly and proprietary to be used by 
research or academic institutions. 
 
 Task scheduling in multitasking systems has been 
extensively studied in the operating system literature. 
Nevertheless, the traditional scheduling techniques used in 
general purpose systems (e.g. FIFO, Shortest Job First, Round 
Robin, etc.) are not adequate to be used in time constrained 
systems. These scheduling policies attempt to reduce certain 
performance metrics (i.e., the average response time), and do 
not deal with the timing constraints of the processes to be 
scheduled. On the other hand, scheduling policies for real-
time systems need to guarantee that tasks will meet their 
deadlines in all circumstances. Such a set of tasks is called 
schedulable, with each task having a predictable behavior. 
Scheduling algorithms can be divided in two major models: 
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preemptive, and non-preemptive. The first one assume that 
any task can be interrupted during its execution, while non-
preemptive algorithms do not allow a running task to be 
interrupted. 
 
 Most scheduling algorithms divide the schedulable tasks 
into two different classes: periodic and aperiodic (sporadic). 
The periodic tasks must run repeatedly, and within fixed 
times (known as period). The aperiodic tasks run sporadically, 
and only once, when they are invoked. Two well-known 
policies are broadly accepted for Real-Time scheduling: RMS 
(Rate Monotonic Scheduling) was shown to be optimal for 
scheduling fixed priority task sets. In dynamic priority 
systems, using EDF (Earliest Deadline First) policy, full 
processor utilization can be achieved. Real-time scheduling 
algorithms are a field of continuing research. 
 
 Taking this base into account, the present project shows the 
results obtained building a new version of an extended Real-
Time operating system. MINIX 1.5 was taken as a base, and it 
was extended it with several real-time services. The most 
important include task management capabilities (both for 
periodic an aperiodic tasks), real-time scheduling algorithms; 
new device drivers allowing A/D conversion, and improved 
fault tolerance features, specially, robust sensing algorithms 
incorporated inside the kernel. 
 
 The work presented in [11] showed the results obtained in a 
research project devoted to use MINIX to implement real-
time scheduling. Several changes was made to source code of 
the kernel, in order to provide the user with a set of system 
calls to create and manage tasks, both periodic or aperiodic. 
The project was devoted to provide programming facilities to 
develop hard real-time software. Under the changed MINIX 
OS, the programmer was allowed to define timing constraints 
for the tasks, letting the OS to execute them in a timely 
fashion. In this way, productivity, security and development 
costs can be improved. 
 
 Several real-time services were added. First, RM and EDF 
scheduling were included. These strategies were later 
combined with other traditional strategies, such as Least 
Laxity First, Least Slack First and Deadline Monotonic. At 
present new flexible schedulers are being included.  
 
 To allow these changes several data structures in the 
operating system were modified (to consider tasks period, 
execution time and criticality). The original task scheduler of 
MINIX used three queues, in order to handle task, server and 
user processes in that order of priority. Each queue was 
scheduled using the Round Robin algorithm. A new 
multiqueue scheme was defined, so as to accommodate real-
time tasks along with interactive and CPU-bound tasks. A 
new set of signals was added to indicate special situations, 
such as missed deadlines, overload or uncertainty of the 
schedulability of the task set. 

 
 All these services were made available to the programmer 
as a complete set of new system calls. A long list of tests 
demonstrated the feasibility of MINIX as a workbench for 
real-time development. Several work was done using the tool, 
spanning from the testing of new scheduling algorithms to 
kernel modifications. In despite of this fact, several additional 
features were identified to be added to original environment. 
 
 Recently, the need to integrate the previous work in a new 
version for the operating system arisen. This happened 
because new MINIX versions were released in the meantime. 
Some of those extensions are presented in the following 
paragraphs. 
 
Recently, the need to integrate the previous work in a new 
version for the operating system arisen. This was motivated in 
part for the release of new MINIX versions in the meantime, 
and because several additional features were identified that 
would be useful to be added to original environment.. Those 
extensions [12] were done using MINIX 2.0; include the 
previous services and add new ones such as analog-digital 
conversion, queue model modification and new real-time 
metrics. These services are described in detail in the 
following paragraphs.  
 

A. Analogic-Digital Conversion 
 The first group of changes was related with the need to 
acquire analogic data from the environment. As stated earlier, 
many real-time systems are used to control a real process, 
such as a production line or a chemical reaction. This implies 
a ‘sense and act’ attitude, i.e., sensing the environment and 
then changing it if necessary to keep control of the whole 
process. To sense the real world, a long list of sensors can be 
used, ranging from thermometers, pressure, infrared, etc.; 
many of them providing analogic signals. 
 
 The game port interface in the PC allows connecting up to 
four analog and four digital inputs. Providing the OS with the 
ability to directly read the game port enhances the chance to 
connect different analog sensors. The possibility to use this 
feature from within MINIX was tested [13], and a device 
driver for the game port was written.  
 
 When the new solutions were tested, it showed poor 
performance when doing the readings. The device driver had 
to be completed rewritten, this time following the same 
framework used under Linux [14], with slightly changes. 
Resistive inputs (coordinates XY) and digital inputs (buttons) 
are aligned together in a byte (8 bits) that can be read at 
address 201h. Input pins from D-connector relates with that 
byte as shown in Fig. 2. 
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Fig. 2 - Game Port Data bus and pins correlation 

 The device driver adds a new kernel task that provide the 
programmer with three basic operations (open, read, close) to 
access the game port as character devices (/dev/js0 and 
/dev/js1, for joystick A and joystick B, respectively). To read 
the axis, the task sends any value to that port (201h) and 
cycles reading the port, waiting for any of the resistive inputs 
to become 0. The number of times the cycle is run is 
proportional to the resistance (and thus position) of the 
joystick. Some scripts  were also modified to make device 
creation a simple step. At present we are working into the 
addition of new drivers for different A/D – D/A controllers. 

B. Joined Scheduling Queues 
 A second set of changes was related with the task scheduler 
management. The original task scheduler of MINIX used 
three queues, in order to handle task, server and user 
processes in that order of priority.  Each queue was scheduled 
using the Round Robin algorithm. 
 

Level 3 INIT User 1 User 2 User n 
Level 2 Memory Manager 

(MM) 
File System 

(FS) 
Level 1 Disk 

Task 
Clock 
Task 

Printer 
Task 

Other 
Tasks 

Level 0 Process Manager 

Fig. 3 - Processes structure in MINIX [2] 

The MINIX structure related to processes, message passing 
architecture and the ready process queuing and handling is 
shown in Fig. 3. Each of these levels are described as follows: 
• Level 0 is in charge of three fundamental duties: process 

management; message passing and interrupt 
management. 

• Level 1 includes I/O processes or tasks (known also as 
device drivers). 

• Level 2 contains only two processes, FS and MM, 
bringing an extended machine able to manage system 
calls of certain complexity. 

• Level 3 comprises all the processes below the INIT 
process, the place for applications (like compilers, shell, 
editors) and user processes. 

 
 The basic idea considered in joining the queues was related 
with the goal that a real-time task should not be interfered by 

low level interrupts (and its associated servers). The work 
presented in [15] worked on the hypothesis that server and 
user queues can be joined, allowing File System (FS) and 
Memory Manager (MM) processes to be moved from server 
to user process category.  
 
 The expected result of such change is getting better 
response time from the operating system. The union of the 
queues avoids interference of the Operating System tasks in 
the most critical real-time tasks. Several examples of possible 
scenarios are introduced. Through these case studies and their 
impacts in processing time, it became clear that the 
unification was feasible. Reducing the number of queues is 
also a step towards fault tolerance. 
 
 When the availability of shared resources (such as FS or 
MM) are diminished, a deadlock problem is likely to appear 
quite often. A deadlock occurs whenever a process is blocked 
waiting for a second process, while the later is also waiting 
for the first one. 
 
 Under the original scheduler in MINIX 2.0, a process 
requiring a service from FS or MM had it delivered 
immediately. This was that way because FS or MM had 
enough priority to start at any time without being preempted. 
An in-depth analysis was made to check the possibility of 
deadlock between FS and MM, first revisiting the semantics 
of them and then trying to measure the impact of the new 
scheduler (with the joined queues). 
 
 The only possible communication between FS y MM 
(under the original source code) is done during system 
initialization, and that connection is unidirectional, thus 
avoiding the circular waiting case. A conclusion from that 
scheme is that FS and MM work independently, having 
relation only with processes of task category (the kernel itself 
or device drivers). Task level processes have higher priority 
and are not preempted because of that condition, with their 
execution being considered instantaneous (and atomic) 
regarding a user process. 
 
 The final conclusion is that deadlocks are not probable to 
occur due to the changed scheduler. User processes cannot 
communicate each other; FS does not communicate with 
MM; and the management of the task queue was not altered 
from the original code. This is a very good feature to achieve 
fault tolerance. 

C. Real-Time Metrics 
 Once the OS was extended with real-time services, the 
need arose to have several measuring tools. It is needed to test 
the evolution of the executing tasks according with the 
different scheduling strategies. The impact of the different 
workloads should be also considered.  
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struct rt_globstats { 
  int actpertsk; 
  int actapetsk; 
  int misperdln; 
  int misapedln; 
  int totperdln; 
  int totapedln; 
  int gratio; 
  clock_t idletime; 
}; 

Fig. 4 - Data structure to keep real-time metrics 

 To do so, the kernel is in charge to keep a data structure 
that is accessible to the user via a system call. Statistics also 
can be monitored online by means of a function key 
displaying all that information on screen. The data structure is 
shown in Fig. 4 and its items are described as follows: 
 actpertsk, acrtapetsk: number of active (running) real-time 
tasks, both periodic and aperiodic. 
 misperdln, misapedln: number of missed deadlines, both 
periodic and aperiodic. 
 totpertsk, totapetsk: number of total scheduled real-time 
tasks instances, both periodic and aperiodic. 
 gratio: guarantee ratio, i.e., the relationship between 
number of instances and deadlines met. 
 idletime: time (in clock ticks) not used as compute time. 

3. FAULT TOLERANCE CAPABILITIES 

 To avoid systems being vulnerable to a single component 
failure, it is reasonable to use several sensors redundantly; 
this is, using one of the more broad used fault tolerance 
technique: replication. Let's think of an automatic tracking 
system: it could use different kinds of sensors (radar, infrared, 
microwave) that are not vulnerable to the same kinds of 
interference. However, redundancy presents a new problem to 
system designers because the system can receives several 
readings that are either partially or entirely in error. To 
improve sensor-system reliability, the practical problem of 
combining, or fusing, the data from many independent sensors 
into one reliable sensor reading has been widely studied. The 
principal goal is to provide the application with the ability to 
make the correct decision in the presence of faulty data. 
 
 Much will depend on the system's accuracy (the distance 
between its results and the desired results) and the system's 
precision (the size of the value range it returns). As sensors 
employed in real-time systems are inherently unreliable, 
distributed sensors makes reliability even compromised. 
 
 In [16], a set of robust sensing algorithms are revised and a 
new hybrid algorithm is presented. The proposed new 
algorithm is a combination of other two: inexact agreement 
and optimal region. The new mechanism provides more 
accuracy and precision. The solution is derived from 
independent sources: one is based on set theory, the other in 
geometry, producing two explanations of the same problem. 
 

 With the aim to prove those proposed solutions, a model 
with replicated sensors was implemented, and the platform of 
choice was RT-MINIX. This OS allows to connect a set of 
sensors using different input methods. The following sections 
will be devoted to analyze the basic properties regarding this 
new capabilities. 
 
 The new capabilities of RT-MINIX regarding the joystick 
driver, allowed to connect a set of  "sensors" in the form of 
potentiometers to the game port. First of all, user applications 
were written to validate the concepts, and the better ones were 
coded into the OS kernel. 

D. Replicated Sensors 
 Sensor replication is an area of growing interest in real-
time processing. It enhances the fault tolerance potential of 
the whole system by exploiting redundancy. As earlier 
explained, MINIX has been expanded with sensor reading 
capabilities, and the existing serial and parallel ports can be 
connected to data acquisition hardware. The main goal was to 
include standard fault tolerant strategies, allowing to check 
the validity of different available sensing algorithms. 
 
 The work presented in [17] introduces an important 
concept in order to tolerate sensor failure: the use of abstract 
sensors. An abstract sensor is a set of values that contains the 
present value of a physical variable of interest. Each abstract 
sensor is implemented using a concrete sensor (a physical 
device that reads a physical variable, i.e. a thermometer). The 
concrete sensor does not need to sense the physical variable 
of interest. For example,  a temperature abstract sensor can be 
constructed using a manometer to sense pressure and then 
applying the Boyle’s law. 
 
 Another important aspect of sensor replication is the ability 
to enhance the expected accuracy from a set of replicated 
sensors far beyond the obtainable using only one sensor. This 
leads to multisensor environments or the use of a distributed 
network of sensors. Data coming from the physical system 
may be faulty due to sensor’s failure, communication 
problems or noise. When using sensor replication, a method 
to combine data from several different sensors is needed. This 
action is called information integration, and it can be 
competitive or complementary.  
 
 In the first approach, each sensor theoretically provides 
identical information (though this is not the case in practice). 
Complementary information integration is done when partial 
information is available from each sensor: that information is 
combined to get the necessary knowledge about the 
environment. 
 
 Another advantage provided by the concept of abstract 
sensor is the capacity of data abstraction. A strategy of fault 
tolerance algorithms is to employ different kinds of redundant 
sensors. Thus, a real application could arrange different 
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sensors (i.e., infrared, microwaves, and radar) that are not 
vulnerable to the same type of interference. To specify such a 
real-time system, only abstract sensors are considered, 
without concern of the type. 
 
 Using the algorithms studied under [16], the idea was to 
extend RT-MINIX with the possibility to use several sensors 
from a fault tolerance perspective. First of all, the four 
algorithms were coded as a user application. The next step 
was to incorporate the ability to use real data. In this case, the 
environment was sensed by means of four potentiometers 
(using the four analogic inputs from the joystick port). The 
inputs were arranged as a set of concrete sensors (acting as 
position sensors for a simulated robotic arm).  
 
 The algorithms worked as expected, providing a unique 
value from the replicated sensors and although one of them 
were faulty (the user had the chance to change data varying 
the potentiometers as desired). 
 
 Finally, the algorithms were combined within the kernel, 
providing the programmer with a set of functions to work 
with abstract sensors. It is possible to create (indicating 
physical devices, such as /dev/js0 and type of algorithms) and 
then read an abstract sensor, even in the presence of faulty 
concrete sensors. 

4. SENSING ALGORITHMS 

 The algorithms selected to be implemented under RT-
MINIX were taken from [16], and are described below: 
 
Algorithm: Approximate-agreement
Input:  A set of sensors, each with a value.  
Output:  A set of sensors, each with a new value converging 

toward a common value. 
 
Step 1:  each sensor broadcasts its value. 
Step 2:  each sensor receives the values from the other 

sensors and sots the values into vector v. 
Step 3:  the lowest τ values and the highest τ values are 

discarded from v at each sensor. 
Step 4:  each sensor forms new vector v' by taking the 

remaining values v[i*τ] where i=0,1,... (the smallest 
remaining value and every remaining τ'th value in 
order). 

Step 5:  the new value is the mean of the values in v'. 
 
Algorithm: Fast Convergence
Input:  a set of sensors, each with a value. 
Output:  A set of sensors, each with a new value converging 

toward a common value. 
 
Step 1:  each sensor receives the values from all other sensors 

and forms set V. 

Step 2:  acceptable values1 are put into a set  A.   
Step 3:  e(A) is computed. 
Step 4:  any unacceptable values are replaced in V by e(A) 2. 
Step 5:  the new sensor value is the average of the values in 

V. 
 
Algorithm: Optimal Region
Input:  a set of sensor readings S. 
Output:  a region describing the region that must be correct. 
 
Step 1:  initialize a list of regions, called C, to NULL. 
Step 2:  sort all points in S into ascending order. 
Step 3:  a reading is considered active if its lower bound has 

been traversed and its upper bound has yet to be 
traversed. Work through the list in order, keeping 
track of active readings. Whenever a region is 
reached where N-τ or more readings are active, add 
the region to C. 

Step 4: All the points have been processed. List C now 
contains all intersections of (N-τ) or more readings. 
Sort the intersections in C. 

Step 5: output the region defined by the lowest lower bound 
and the largest upper bound in C. 

 
Algorithm: Brooks-Iyengar Hybrid
Input:  a set of data S. 
Output:  a real number giving the precise answer and a range 

giving its explicit accuracy bounds. 
 
Step 1:  each sensor receives the values from all other sensors 

and forms set V. 
Step 2:  perform the optimal region algorithm on V and return 

a set A consisting of the ranges where at least N-τ 
sensors intersect. 

Step 3:  output the range defined by the lowest lower bound 
and the largest upper bound in A. These are the 
accuracy bounds of the answer. 

Step 4: sum the midpoints of each range in A multiplied by 
the number of sensors whose readings intersect in 
that range, and divide by the number of factors. This 
is the answer. 

 
 A sensor is called a processing element (PE). The number 
of PEs is N and τ is the number of malfunctioning PEs. These 
algorithms are intended to return a valid value from a set of 
readings from N PEs given τ of them are known (or 
supposed) to be wrong; not to establish how many sensors are 
faulty. 

                                                           
1 A value is acceptable if it is within distance δ of N-τ other 
values. 
2 e(A) can be any of a number of functions on the values of A. 
The authors suggested average, median, or midpoint as 
possible choices of e(A) that may be appropriate for different 
applications. 
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5. TESTING THE ALGORITHMS 

E.  Static Tests 
 To prove that the algorithms have been implemented 
properly, a set of tests had to be conducted. At a first step, 
data was used "statically", this is, hard-coded in the test 
programs. The set of values used in the first test were the 
same presented in [16] and shown in Table 1. It simulates a 
set of 5 sensors, one of them working in a faulty manner, thus 
providing a different value each time a reading was made. 
This set of sensors can be thought as belonging to a robotic 
arm, providing information about the arm's elbow position, 
for example. The measured angle is expressed as a value 
along a tolerance (both plus and minus). Those ranges imply 
the concept of abstract sensor: "a set of values that contains 
the physical variable of interest" [17]. 
 

Case S 1 S 2 S 3 S 4 S 5 
1 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 3,0 ± 1,6
2 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 1,0 ± 1,6
3 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 2,5 ± 1,6
4 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 0,9 ± 1,6

Table 1 - Sensors and its broadcasted values [16] 

 Each one of the algorithms shown above were applied to all 
the four cases in Table 1. At any time, the number of sensors 
is 5, and the number of sensors with intermittent failures is 1. 
These conditions preserve the effectiveness of the algorithms 
(because 1<5/2). Results achieved by our own version of the 
algorithms running under RT-MINIX were the same stated in 
[16], thus validating our implementation. 
 
 The algorithms were also tested using another set of values, 
this time taken from [18]. Fig. 5 shows both the set of values 
and the results to be obtained. 
 

 
Fig. 5 - Values and regions [18] 

 In this example, sensors are represented by arrows (labeled 
with letters from A to E), with values once again expressed as 
ranges (indicated by numbers on both arrows' ends). The 
shaded rectangles are regions that Optimal Region and 

Brooks-Iyengar algorithms have to identify, where the circled 
numbers above the regions represent the number of 
intersections in that region. Finally, arrow R is the interval 
where the answer should be found. All algorithms were 
applied to this set of values, and their output is shown in Fig. 
6. 
 
Testing robust sensing algorithms with static data 
 
Approximate Agreement Alg.:  6.33 
Optimal Region Alg.       :  [4.0..9.0] 
Brooks-Iyengar Hybrid Alg.:  [4.0..9.0]  6.192 
Fast Convergence Alg.     :  6.90 

Fig. 6 - Output from second static test 

F. Dynamic Tests 
 After the algorithms have been successfully proven with 
static data, an idea took form in the manner to prove them 
once again, this time with dynamic data, i.e. variable from test 
to test. To provide the algorithms with such sets of values, a 
device was built: four linear 100MΩ potentiometers were 
connected to each one of the four resistive inputs on the game 
port of a PC. This testbed would use one of the recent real-
time services available in RT-MINIX (Analogic/Digital 
conversion capabilities through the joystick driver). The 
potentiometers can be thought this time as sensors for a valve 
in a pipeline, providing information about the valve position, 
where the minimum value referring the valve as totally 
closed, while the maximum value representing the valve as 
totally open. The wiring diagram for the testbed is shown in 
Fig. 7. 
 
 An auxiliary program was written to read the four inputs 
simultaneously, showing the values on screen. This 
application is used to adjust the "sensors" to the desired value, 
allowing to simulate a faulty one; positioning it out of range 
from the remaining ones (for this test, N=4 and τ=1). 
  

 
Fig. 7 - Testbed's wiring diagram 
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 After the model is adjusted to a particular situation, the 
main test program is run. At first, a set of readings are taken 
from the model. A sensor reading is defined as a value along 
with a lower bound and an upper bound. Thus, to make a 
sensor reading, three consecutive port readings are made, 
repeating this process for each of the four sensors. Each of the 
available algorithms are then applied to this set of sensor 
readings, displaying the results on screen (see Fig. 8). 
 
Testing robust sensing algorithms with dynamic data 
 
Sensor L. Bound Value  U. Bound 
  0 578.0  638.0  677.0 
  1 614.0  626.0  688.0 
  2 312.0  314.0  316.0 
  3 604.0  649.0  681.0 
 
Approximate Agreement Alg.: 632.00 
Optimal Region Alg.       : [614.00..677.00] 
Brooks-Iyengar Hybrid Alg.: [614.00..677.00] 645.50 
Fast Convergence Alg.     : 556.75 

Fig. 8 - Output from dynamic test 

G. Dynamic Test Summary 
As stated earlier, the model provided the ability to set 
different sensor conditions, making it easy to conduct several 
runs for the dynamic test.  
 

Sensors 
1 2 

 
Run 

lb v ub lb v ub 
A 14,0 15,0 15,0 683,0 684,0 684,0
B 578,0 638,0 677,0 614,0 626,0 688,0
C 473,0 480,0 507,0 480,0 504,0 538,0
D 492,0 503,0 507,0 433,0 506,0 517,0
E 506,0 516,0 546,0 488,0 517,0 520,0
F 535,0 610,0 703,0 519,0 616,0 660,0
G 675,0 686,0 709,0 658,0 682,0 682,0
H 565,0 638,0 688,0 592,0 658,0 706,0
I 555,0 631,0 702,0 532,0 656,0 759,0
J 651,0 667,0 685,0 625,0 706,0 730,0
K 678,0 679,0 680,0 679,0 680,0 681,0
L 678,0 679,0 682,0 681,0 681,0 681,0

Table 2 - Values used in dynamic test (sensors 1 and 2) 

 The values used in all the runs are presented in  Table 2 and 
Table 3, showing for each sensor the corresponding reading, 
in three columns: a lower bound (lb), a value (v) and an upper 
bound (ub).  
 
 The results obtained after applying each algorithm 
available under RT-MINIX to those readings are contained in 
Table 4, and are expressed depending on the algorithm, as a 
value (v); a range with a lower bound (lb) and upper bound 

(ub) or a range and a value. The algorithms are identified by 
their initials: AA, Approximate Agreement; OR, Optimal 
Region; BIH, Brooks-Iyengar Hybrid and FC, Fast 
Convergence. 
 

Sensors 
3 4 

 
Run

lb v ub lb v ub 
A 683,0 684,0 684,0 683,0 683,0 684,0
B 313,0 314,0 315,0 604,0 649,0 681,0
C 307,0 308,0 308,0 478,0 492,0 550,0
D 308,0 308,0 308,0 482,0 529,0 531,0
E 307,0 307,0 308,0 480,0 510,0 513,0
F 148,0 218,0 308,0 525,0 609,0 680,0
G 148,0 148,0 148,0 674,0 688,0 689,0
H 148,0 179,0 202,0 609,0 647,0 705,0
I 167,0 193,0 201,0 553,0 610,0 657,0
J 191,0 192,0 192,0 647,0 668,0 686,0
K 193,0 193,0 194,0 672,0 679,0 680,0
L 194,0 194,0 194,0 677,0 679,0 681,0

Table 3 - Values used in dynamic test (sensors 3 and 4) 

 
Algorithms 

AA OR BIH FC 
 

Run
v lb ub lb ub v v 

A 683,5 683,0 684,0 683,0 684,0 683,2 516,5
B 632,0 614,0 677,0 614,0 677,0 645,5 556,7
C 486,0 480,0 507,0 480,0 507,0 493,5 446,0
D 504,5 492,0 507,0 492,0 507,0 499,5 461,5
E 513,0 506,0 513,0 506,0 513,0 509,5 462,5
F 609,5 535,0 660,0 535,0 660,0 597,5 475,0
G 682,0 675,0 682,0 675,0 682,0 678,5 551,0
H 642,5 609,0 688,0 609,0 688,0 648,5 530,5
I 620,5 555,0 657,0 555,0 657,0 606,0 522,5
J 667,5 651,0 685,0 651,0 685,0 668,0 558,2
K 679,0 679,0 680,0 679,0 680,0 679,5 557,7
L 679,0 678,0 681,0 678,0 681,0 679,5 558,2

Table 4 - Results from all runs at the dynamic test 

H. Algorithm Comparison 
 After the implementation steps and tests were finished, 
some comparisons could be drawn: 
• Development: none of the algorithms imposed difficulties 

in their implementation. 
• Response time: no evident differences in response time 

from all the algorithms were found.  
• Results: Approximate Agreement (AA) and Fast 

Convergence (FC) return a value, while Optimal Region 
returns a range, and Brooks-Iyengar Hybrid returns a 
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range plus a value. Optimal Region (OR) and Brooks-
Iyengar Hybrid (BIH) give answers within a narrower 
range than input data. As several dynamic tests were 
performed, with the model adjusted to different situations, 
it was found that the answer from AA always fell inside 
the range returned from OR and BIH. With these results in 
view, any of the algorithms could be used. However, there 
was found that the broader the result range from BIH, 
more the difference between the result value of that 
algorithm and the answer from AA. 

  
 

Test 
Range 

Amplitude 
BIH (2) 

Value Diff. 
AA and BIH 

(1) 

Relation 
(1)/(2) 

A 1,00 0,25 25,0% 
K 1,00 0,50 50,0% 
L 3,00 0,50 16,7% 
E 7,00 3,50 50,0% 
G 7,00 3,50 50,0% 
D 15,00 5,00 33,3% 
C 27,00 7,50 27,8% 
J 34,00 0,50 1,5% 
B 63,00 13,50 21,4% 
H 79,00 6,00 7,6% 
I 102,00 14,50 14,2% 
F 125,00 12,00 9,6% 

Table 5 - Analysis of Results from Algorithms 

 To know if this deduction could be generalized, range 
amplitude (taking ub - lb) and the difference (absolute value) 
between the result value for AA and HBI were calculated for 
all runs, along with the relation (in percent) among these two 
numbers. That information is contained in Table 5, presented 
sorted in ascending order by the second column (amplitude of 
result range). 
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Fig. 9 - Comparison of Results 

 From Table 5 a graph was made (Fig. 9), where the 
tendency is confirmed: the broader the amplitude of the result 
range in BIH, greater the difference between the result value 
of that algorithm and the answer from AA. It can be inferred 

that it is convenient to apply Brooks-Iyengar Hybrid in case 
of using sensors with a large precision range. 

6. CURRENT APPLICATIONS 

 The present section is mainly devoted to show several 
applications that have been developed using this Operating 
System, and a new set of programs being built at present. 

I. Supervisory Control And Data Acquisition (SCADA) 
 The first developed application was a SCADA program 
developed with academic purposes. It was written previously 
to run under MINIX and  later adapted to execute in a real-
time environment. The SCADA application is built to be used 
to supervise a set of industrial processes. Different parameters 
can be defined for each process, including ports to be read, 
values to be recorded and alarms to be raised. Data acquired 
by the program can also be monitored from another computer 
through the serial ports. A history log file is generated, 
allowing the revision (and printout) of the activity that 
occurred during program execution.  
 
 A SCADA tool is a good application to test RT-MINIX 
with real processing conditions. It is composed of several 
periodic and sporadic real-time tasks running concurrently. It 
also includes a set of soft real-time tasks combined with 
interactive processes. 

J.  Model of a Bottle-filling Line 
 A prototype of a bottle-filling system (as described in [19]) 
is currently under construction, with the aim of using RT-
MINIX as the RTOS to control such a real process. 
 
 The proposed system modeled in that work consists in a 
number of bottle-filling lines fed by a single vat containing 
the liquid to be bottled. The bottle size may differ from line to 
line. The tasks of the control system are to control the level, 
the pH and the temperature of the liquid in the vat, to manage 
the movement and filling of bottles in the various lines, and to 
exchange and log information with human operators working 
with the individual lines and a supervisor monitoring the 
entire system. 
 
 With several concurrent tasks (both periodic and 
aperiodic), this prototype will impose RT-MINIX real-world 
constraints to play with. 

7. PRESENT WORK 

 The sensor integration problem and tolerance of failures 
from replicated (redundant) sensors can now be studied in 
depth with help of RT-MINIX thanks to the incorporated 
sensing algorithms. A possible work line is deal with 
multidimensional sensors (replacing each interval 
corresponding to a physical value by a vector of intervals). 
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 The algorithms presented in Section 2 are only two 
examples of a long and growing list of scheduling algorithms. 
Real-time guarantees in the presence of faults along with fault 
tolerant scheduling strategies are very interesting fields to 
extend the present state of RT-MINIX. Feasible Shortest Path
(FSP) and Linear Time Heuristic (LTH) are models that can 
be studied and compared, with a future implementation in 
RT-MINIX depending on results to be obtained. 

  

 
 One of the problems associated with scheduling algorithms 
is priority inversion. [20] presents a very clear example to 
definitely understand priority inversion, a case that occurred
during the NASA Mars Pathfinder mission in 1997. 

  

 
 Any task within RT-MINIX can have a priority: if new 
scheduling algorithms to be implemented will consider that 
value to pick a task instead of another one, care must be taken 
in order to handle this characteristic properly. It is possible 
that a task with medium priority be scheduled while a high 
priority task is waiting for a resource that is blocked by a low 
priority task. A solution to that dilemma known as priority 
inheritance was identify and proposed in [21]. Tasks should 
inherit the right value to avoid priority inversion and 
furthermore deadline missing, thus improving the overall 
performance of the scheduling algorithms.  

8. CONCLUSION 

 Fault tolerance, as a key discipline with growing use inside 
real-time systems, provides several techniques and schemes 
that can and must be used in different areas of such systems: 
from specification languages and temporal logic in the 
definition steps; the scheduling perspective and replication of 
sensors and actuators in the implementation steps. 
 
 This work described how the real-time extensions to the 
MINIX operating system, transforming it into RT-MINIX, 
have been complemented with fault tolerant sensing 
algorithms to allow the development of applications taking 
benefits of that kind of services provided from the operating 
system kernel. With these extensions, RT-MINIX can be used 
as a platform for real-time processing or as a starting point for 
adding more real-time services. Robust sensing algorithms 
were implemented and tested under RT-MINIX, and are now 
available as a service to applications having to deal with 
sensor replication. 
 
 MINIX proved to be a feasible testbed for OS development 
and real-time extensions that could be easily added to it. This 
“new” operating system (a MINIX 2.0 base with real-time 
extensions) has a rich set of features, which makes it a good 
choice to conduct real-time experiences. The added real-time 
services covered several areas: 
• Task creation: tasks can be created either periodic or 

aperiodic, stating their period, worst execution time and 
priority 

 
• Clock resolution management: the resolution (grain) of 

the internal clock can be changed to get better accuracy 
while scheduling tasks. 

• Scheduling algorithms: both RMS and EDF algorithms 
are supported, and can be selected on the fly. 

 
• Statistics: several variables about the whole operation are 

accessible to the user to provide data for benchmarking 
and testing new developments. 

• Supervisory Control and Data Acquisition: as a user 
application, it makes full use of real-time services. 

 
With these extensions, RT-MINIX can be used as a platform 
for real-time processing or as a starting point for adding more 
real-time services. 

K. Future Work 
 Future work may include extending the sensing algorithms 
to deal with multidimensional sensors, (replacing each 
interval corresponding to a physical value by a vector of 
intervals). Fault tolerant schedulers must be studied and 
integrated in a next version of RT-MINIX, providing the 
programmer with a specialized and improved fault-tolerant 
environment. 
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