

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

INFORME TÉCNICO

Extending MINIX with Real-Time Services
and Fault Tolerance Capabilities

Pablo J. Rogina

Dr. Gabriel Wainer

Report n.: 2000-001

Pabellón 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires

Argentina

http://www.dc.uba.ar

Title: Extending MINIX with Real-Time Services and Fault
Tolerance Capabilities

Authors: Pablo J. Rogina, Dr. Gabriel Wainer

E-mail: pr6a@dc.uba.ar, gabrielw@dc.uba.ar

Report n.: 2000-001

Key-words: Fault Tolerance, Operating Systems, Real-time Systems,
Sensing Algorithms, Sensor Replication

Abstract: The MINIX operating system was extended with real-time services, ranging from A/D
drivers to new scheduling algorithms and statistics collection. A testbed was
constructed to tests several sensor replication techniques in order to implement and
verify several robust sensing algorithms. As a result, new services enhancing fault
tolerance for replicated sensors were also provided within the kernel. The resulting OS
offers new features such as real-time task management (for both periodic or aperiodic
tasks), clock resolution handling, and sensor replication manipulation.

To obtain a copy of this report please fill in your name and address and return this page to:

Infoteca
Departamento de Computación - FCEN
Pabellón 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires - Argentina

TEL/FAX: (54)(11)4783-0729
e-mail: infoteca@dc.uba.ar

You can also get a copy by anonymous ftp to: zorzal.dc.uba.ar/pub/tr

 or visiting our web: http://www.dc.uba.ar/people/proyinv/tr.html

Name:...

Address:...

..

Extending MINIX with Real-Time Services and Fault Tolerance Capabilities

Pablo J. Rogina Gabriel Wainer
{pr6a, gabrielw}@dc.uba.ar

Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Pabellón I - Ciudad Universitaria
Buenos Aires (1428) – ARGENTINA

Abstract - The MINIX operating system was extended with
real-time services, ranging from A/D drivers to new
scheduling algorithms and statistics collection. A testbed was
constructed to tests several sensor replication techniques in
order to implement and verify several robust sensing
algorithms. As a result, new services enhancing fault
tolerance for replicated sensors were also provided within the
kernel. The resulting OS offers new features such as real-time
task management (for both periodic or aperiodic tasks), clock
resolution handling, and sensor replication manipulation.

 Index Terms⎯Fault Tolerance, Operating Systems, Real-
time Systems, Sensing Algorithms, Sensor Replication.

1. INTRODUCTION

 Computing systems are already among almost any human
activities. In particular, real-time systems (those where the
correctness depends not only on the results obtained, but also
on the time at which these results are produced) are present in
more and more complex tasks every day, where an error can
lead to catastrophic situations (even with danger to human
life). Therefore, fault tolerance capabilities for this kind of
systems are critical to their success during their lifetime cycle.
Although fault tolerance strategies are being developed since
a long time ago, they were oriented mainly to distributed
systems.

 This kind of systems span from microcontrollers in
automobile engines to very complex applications, such as
aircraft flight control or process control in manufacturing
plants. Nonetheless, most real-time systems consist of a
control system and a controlled system. Information about the
environment is provided via sensors, and the system can in
turn modify the state of the environment through actuators.
Let's take for example a simple manufacturing process: a
water tank must have its temperature and pH within a certain
range; this is a basic control process (see Fig. 1). The
environment is the controlled system, and a computer must
keep the temperature and balance the pH. It is necessary that
the control system monitors the environment, using sensors (a
thermometer and a pH-meter in this case). The control system
changes the environment by means of another type of

components: actuators (for the example, a heater and an acid
injector).

 A control process can follow these steps in a repetitive
manner, with time constraints applied:
 Sensing: real world status must be known (by measuring
temperature and pH value)
 Controlling: real world values must be checked.
Temperature and pH should be within certain limits (lower
and upper).
 Acting: real world status may need to be changed. Turning
the heater on to raise the temperature until the required value
is reached.

Fig. 1 - Scheme for a basic control process

 As many other computer applications, real-time systems
are usually built by using the services offered by an operating
system. In this case, the services provided should be slightly
different than the case for traditional applications. It should
provide basic support for predictability, satisfaction of real-
time constraints, fault tolerance and integration between time-
constrained resources and scheduling. When real-time
systems are built using the services of a programming
environment, the timing constraints of the system are usually
attached to processes (or tasks). The tasks have timing
constraints, called deadlines, that cannot be missed. Failure in
meeting the tasks’ deadlines can lead to catastrophic
consequences. In the previous example, letting the tank's
content to become acid would be a great economic lost.

 1

 The goal on designing and building a fault tolerant system
is to guarantee that the system will continue working as a
whole, even in the presence of faults. Sensors and actuators
(hardware) and tasks (software) are potential sources of
failures within a real-time system. The service delivered by a
system is the system behavior as it is perceived by another
special system(s) interacting with the considered system: its
user(s) [1].

 Using this definition, it can be said that a system faults
when it fails to deliver the service(s) it is intended to.
Depending on the system's complexity and relevance, this
failure can be tolerated (statistical erroneous data from a
census, that can be recalculated again later) or can lead to a
catastrophic accident (an air traffic control system). The
broader use of computers in critical missions forced the need
to improve the capacity of avoiding and tolerate faults. A
failure is an error, due perhaps to a design problem,
manufacturing, programming, a human error or
environmental conditions. A component failure generally
does not lead straightly to the failure of the whole system, but
it may be the beginning of a number of failures ending in the
system's fault.

 Failures can occur due to errors in the hardware (a short-
circuit) or errors in the software (using '!=' instead of '=' in a
C program). The first case, known as hardware fault
tolerance, is well-understood, to the point of being an
Engineering discipline. Several reasons can be cited:
• The physics of hardware components, such as silicon,

are well understood. The complexity of large hardware
designs is several orders of magnitude less than large
software systems.

• Given the costs associated with mass production,
hardware engineers produce carefully thought out
specification along with functional tests that can be
applied in order to test units coming off the assembly
line.

• Electronic components are more reliable year after
year. Values of MTBF (Mean Time Between Faults)
have raised continuously in the last decades. No one
can imagine a hard disk with faulty sectors these days.
Fault tolerant systems are expected to go on (survive)
even with component faults, not to rely on the low
probability of them to fail.

Timing faults can be classified in:
 Transient they happen once and then disappear. If the

task or action is repeated, the fault does not
occur again.

 Intermittent they appear, disappear, and are present
again. This condition makes them hard to
diagnose.

 Permanent faults that are present until the failed
component is replaced or repaired.

 This work is devoted to present the efforts in building a
programming environment for real-time systems. The work is
based on a modification of the Minix operating system, so as
the results can be used with educational purposes. Sensor
replication schemes were included in the kernel, providing
fault tolerance when sensing values from the real world.

 The present document is organized as follows: Section 2
describes the extensions done to the RT-MINIX operating
system. Section 3 is devoted to fault tolerance capabilities
related with sensing algorithms and sensor replication; while
sensing algorithms are presented in Section 4. Both static and
dynamic tests are discussed in Sections 5. Sections 6 and 7
explain current applications and work in progress using RT-
MINIX. Finally, conclusions and future work proposals are
listed in Section 8.

2. REAL-TIME EXTENSIONS TO MINIX

 MINIX [2] (name that stands for Mini-UNIX), is a
complete, timesharing, multitasking operating system.
Inspired by UNIX, it was written from scratch by A.
Tannenbaum. Though it is copyrighted, the source has been
made widely available to universities for study and research
in computer science courses.

 Existing real-time operating systems (RTOS) can be
divided in two categories:
• Systems implemented using somewhat stripped down

and optimized (or specialized) versions of conventional
timesharing OS.

• Systems starting from scratch, focusing on predictability
as a key design feature.

 Research projects falling in the first category include
KURT [3], RT Mach [4] and RT-Linux [5]. Operating
systems like Spring [6], Maruti [7] and YARTOS [8] were
developed using the second approach. Though several
commercially available systems, including LynxOS [9] and
QNX [10], offer real-time performance and services to
applications, they are too costly and proprietary to be used by
research or academic institutions.

 Task scheduling in multitasking systems has been
extensively studied in the operating system literature.
Nevertheless, the traditional scheduling techniques used in
general purpose systems (e.g. FIFO, Shortest Job First, Round
Robin, etc.) are not adequate to be used in time constrained
systems. These scheduling policies attempt to reduce certain
performance metrics (i.e., the average response time), and do
not deal with the timing constraints of the processes to be
scheduled. On the other hand, scheduling policies for real-
time systems need to guarantee that tasks will meet their
deadlines in all circumstances. Such a set of tasks is called
schedulable, with each task having a predictable behavior.
Scheduling algorithms can be divided in two major models:

 2

preemptive, and non-preemptive. The first one assume that
any task can be interrupted during its execution, while non-
preemptive algorithms do not allow a running task to be
interrupted.

 Most scheduling algorithms divide the schedulable tasks
into two different classes: periodic and aperiodic (sporadic).
The periodic tasks must run repeatedly, and within fixed
times (known as period). The aperiodic tasks run sporadically,
and only once, when they are invoked. Two well-known
policies are broadly accepted for Real-Time scheduling: RMS
(Rate Monotonic Scheduling) was shown to be optimal for
scheduling fixed priority task sets. In dynamic priority
systems, using EDF (Earliest Deadline First) policy, full
processor utilization can be achieved. Real-time scheduling
algorithms are a field of continuing research.

 Taking this base into account, the present project shows the
results obtained building a new version of an extended Real-
Time operating system. MINIX 1.5 was taken as a base, and it
was extended it with several real-time services. The most
important include task management capabilities (both for
periodic an aperiodic tasks), real-time scheduling algorithms;
new device drivers allowing A/D conversion, and improved
fault tolerance features, specially, robust sensing algorithms
incorporated inside the kernel.

 The work presented in [11] showed the results obtained in a
research project devoted to use MINIX to implement real-
time scheduling. Several changes was made to source code of
the kernel, in order to provide the user with a set of system
calls to create and manage tasks, both periodic or aperiodic.
The project was devoted to provide programming facilities to
develop hard real-time software. Under the changed MINIX
OS, the programmer was allowed to define timing constraints
for the tasks, letting the OS to execute them in a timely
fashion. In this way, productivity, security and development
costs can be improved.

 Several real-time services were added. First, RM and EDF
scheduling were included. These strategies were later
combined with other traditional strategies, such as Least
Laxity First, Least Slack First and Deadline Monotonic. At
present new flexible schedulers are being included.

 To allow these changes several data structures in the
operating system were modified (to consider tasks period,
execution time and criticality). The original task scheduler of
MINIX used three queues, in order to handle task, server and
user processes in that order of priority. Each queue was
scheduled using the Round Robin algorithm. A new
multiqueue scheme was defined, so as to accommodate real-
time tasks along with interactive and CPU-bound tasks. A
new set of signals was added to indicate special situations,
such as missed deadlines, overload or uncertainty of the
schedulability of the task set.

 All these services were made available to the programmer
as a complete set of new system calls. A long list of tests
demonstrated the feasibility of MINIX as a workbench for
real-time development. Several work was done using the tool,
spanning from the testing of new scheduling algorithms to
kernel modifications. In despite of this fact, several additional
features were identified to be added to original environment.

 Recently, the need to integrate the previous work in a new
version for the operating system arisen. This happened
because new MINIX versions were released in the meantime.
Some of those extensions are presented in the following
paragraphs.

Recently, the need to integrate the previous work in a new
version for the operating system arisen. This was motivated in
part for the release of new MINIX versions in the meantime,
and because several additional features were identified that
would be useful to be added to original environment.. Those
extensions [12] were done using MINIX 2.0; include the
previous services and add new ones such as analog-digital
conversion, queue model modification and new real-time
metrics. These services are described in detail in the
following paragraphs.

A. Analogic-Digital Conversion
 The first group of changes was related with the need to
acquire analogic data from the environment. As stated earlier,
many real-time systems are used to control a real process,
such as a production line or a chemical reaction. This implies
a ‘sense and act’ attitude, i.e., sensing the environment and
then changing it if necessary to keep control of the whole
process. To sense the real world, a long list of sensors can be
used, ranging from thermometers, pressure, infrared, etc.;
many of them providing analogic signals.

 The game port interface in the PC allows connecting up to
four analog and four digital inputs. Providing the OS with the
ability to directly read the game port enhances the chance to
connect different analog sensors. The possibility to use this
feature from within MINIX was tested [13], and a device
driver for the game port was written.

 When the new solutions were tested, it showed poor
performance when doing the readings. The device driver had
to be completed rewritten, this time following the same
framework used under Linux [14], with slightly changes.
Resistive inputs (coordinates XY) and digital inputs (buttons)
are aligned together in a byte (8 bits) that can be read at
address 201h. Input pins from D-connector relates with that
byte as shown in Fig. 2.

 3

Fig. 2 - Game Port Data bus and pins correlation

 The device driver adds a new kernel task that provide the
programmer with three basic operations (open, read, close) to
access the game port as character devices (/dev/js0 and
/dev/js1, for joystick A and joystick B, respectively). To read
the axis, the task sends any value to that port (201h) and
cycles reading the port, waiting for any of the resistive inputs
to become 0. The number of times the cycle is run is
proportional to the resistance (and thus position) of the
joystick. Some scripts were also modified to make device
creation a simple step. At present we are working into the
addition of new drivers for different A/D – D/A controllers.

B. Joined Scheduling Queues
 A second set of changes was related with the task scheduler
management. The original task scheduler of MINIX used
three queues, in order to handle task, server and user
processes in that order of priority. Each queue was scheduled
using the Round Robin algorithm.

Level 3 INIT User 1 User 2 User n
Level 2 Memory Manager

(MM)
File System

(FS)
Level 1 Disk

Task
Clock
Task

Printer
Task

Other
Tasks

Level 0 Process Manager

Fig. 3 - Processes structure in MINIX [2]

The MINIX structure related to processes, message passing
architecture and the ready process queuing and handling is
shown in Fig. 3. Each of these levels are described as follows:
• Level 0 is in charge of three fundamental duties: process

management; message passing and interrupt
management.

• Level 1 includes I/O processes or tasks (known also as
device drivers).

• Level 2 contains only two processes, FS and MM,
bringing an extended machine able to manage system
calls of certain complexity.

• Level 3 comprises all the processes below the INIT
process, the place for applications (like compilers, shell,
editors) and user processes.

 The basic idea considered in joining the queues was related
with the goal that a real-time task should not be interfered by

low level interrupts (and its associated servers). The work
presented in [15] worked on the hypothesis that server and
user queues can be joined, allowing File System (FS) and
Memory Manager (MM) processes to be moved from server
to user process category.

 The expected result of such change is getting better
response time from the operating system. The union of the
queues avoids interference of the Operating System tasks in
the most critical real-time tasks. Several examples of possible
scenarios are introduced. Through these case studies and their
impacts in processing time, it became clear that the
unification was feasible. Reducing the number of queues is
also a step towards fault tolerance.

 When the availability of shared resources (such as FS or
MM) are diminished, a deadlock problem is likely to appear
quite often. A deadlock occurs whenever a process is blocked
waiting for a second process, while the later is also waiting
for the first one.

 Under the original scheduler in MINIX 2.0, a process
requiring a service from FS or MM had it delivered
immediately. This was that way because FS or MM had
enough priority to start at any time without being preempted.
An in-depth analysis was made to check the possibility of
deadlock between FS and MM, first revisiting the semantics
of them and then trying to measure the impact of the new
scheduler (with the joined queues).

 The only possible communication between FS y MM
(under the original source code) is done during system
initialization, and that connection is unidirectional, thus
avoiding the circular waiting case. A conclusion from that
scheme is that FS and MM work independently, having
relation only with processes of task category (the kernel itself
or device drivers). Task level processes have higher priority
and are not preempted because of that condition, with their
execution being considered instantaneous (and atomic)
regarding a user process.

 The final conclusion is that deadlocks are not probable to
occur due to the changed scheduler. User processes cannot
communicate each other; FS does not communicate with
MM; and the management of the task queue was not altered
from the original code. This is a very good feature to achieve
fault tolerance.

C. Real-Time Metrics
 Once the OS was extended with real-time services, the
need arose to have several measuring tools. It is needed to test
the evolution of the executing tasks according with the
different scheduling strategies. The impact of the different
workloads should be also considered.

 4

struct rt_globstats {
 int actpertsk;
 int actapetsk;
 int misperdln;
 int misapedln;
 int totperdln;
 int totapedln;
 int gratio;
 clock_t idletime;
};

Fig. 4 - Data structure to keep real-time metrics

 To do so, the kernel is in charge to keep a data structure
that is accessible to the user via a system call. Statistics also
can be monitored online by means of a function key
displaying all that information on screen. The data structure is
shown in Fig. 4 and its items are described as follows:
 actpertsk, acrtapetsk: number of active (running) real-time
tasks, both periodic and aperiodic.
 misperdln, misapedln: number of missed deadlines, both
periodic and aperiodic.
 totpertsk, totapetsk: number of total scheduled real-time
tasks instances, both periodic and aperiodic.
 gratio: guarantee ratio, i.e., the relationship between
number of instances and deadlines met.
 idletime: time (in clock ticks) not used as compute time.

3. FAULT TOLERANCE CAPABILITIES

 To avoid systems being vulnerable to a single component
failure, it is reasonable to use several sensors redundantly;
this is, using one of the more broad used fault tolerance
technique: replication. Let's think of an automatic tracking
system: it could use different kinds of sensors (radar, infrared,
microwave) that are not vulnerable to the same kinds of
interference. However, redundancy presents a new problem to
system designers because the system can receives several
readings that are either partially or entirely in error. To
improve sensor-system reliability, the practical problem of
combining, or fusing, the data from many independent sensors
into one reliable sensor reading has been widely studied. The
principal goal is to provide the application with the ability to
make the correct decision in the presence of faulty data.

 Much will depend on the system's accuracy (the distance
between its results and the desired results) and the system's
precision (the size of the value range it returns). As sensors
employed in real-time systems are inherently unreliable,
distributed sensors makes reliability even compromised.

 In [16], a set of robust sensing algorithms are revised and a
new hybrid algorithm is presented. The proposed new
algorithm is a combination of other two: inexact agreement
and optimal region. The new mechanism provides more
accuracy and precision. The solution is derived from
independent sources: one is based on set theory, the other in
geometry, producing two explanations of the same problem.

 With the aim to prove those proposed solutions, a model
with replicated sensors was implemented, and the platform of
choice was RT-MINIX. This OS allows to connect a set of
sensors using different input methods. The following sections
will be devoted to analyze the basic properties regarding this
new capabilities.

 The new capabilities of RT-MINIX regarding the joystick
driver, allowed to connect a set of "sensors" in the form of
potentiometers to the game port. First of all, user applications
were written to validate the concepts, and the better ones were
coded into the OS kernel.

D. Replicated Sensors
 Sensor replication is an area of growing interest in real-
time processing. It enhances the fault tolerance potential of
the whole system by exploiting redundancy. As earlier
explained, MINIX has been expanded with sensor reading
capabilities, and the existing serial and parallel ports can be
connected to data acquisition hardware. The main goal was to
include standard fault tolerant strategies, allowing to check
the validity of different available sensing algorithms.

 The work presented in [17] introduces an important
concept in order to tolerate sensor failure: the use of abstract
sensors. An abstract sensor is a set of values that contains the
present value of a physical variable of interest. Each abstract
sensor is implemented using a concrete sensor (a physical
device that reads a physical variable, i.e. a thermometer). The
concrete sensor does not need to sense the physical variable
of interest. For example, a temperature abstract sensor can be
constructed using a manometer to sense pressure and then
applying the Boyle’s law.

 Another important aspect of sensor replication is the ability
to enhance the expected accuracy from a set of replicated
sensors far beyond the obtainable using only one sensor. This
leads to multisensor environments or the use of a distributed
network of sensors. Data coming from the physical system
may be faulty due to sensor’s failure, communication
problems or noise. When using sensor replication, a method
to combine data from several different sensors is needed. This
action is called information integration, and it can be
competitive or complementary.

 In the first approach, each sensor theoretically provides
identical information (though this is not the case in practice).
Complementary information integration is done when partial
information is available from each sensor: that information is
combined to get the necessary knowledge about the
environment.

 Another advantage provided by the concept of abstract
sensor is the capacity of data abstraction. A strategy of fault
tolerance algorithms is to employ different kinds of redundant
sensors. Thus, a real application could arrange different

 5

sensors (i.e., infrared, microwaves, and radar) that are not
vulnerable to the same type of interference. To specify such a
real-time system, only abstract sensors are considered,
without concern of the type.

 Using the algorithms studied under [16], the idea was to
extend RT-MINIX with the possibility to use several sensors
from a fault tolerance perspective. First of all, the four
algorithms were coded as a user application. The next step
was to incorporate the ability to use real data. In this case, the
environment was sensed by means of four potentiometers
(using the four analogic inputs from the joystick port). The
inputs were arranged as a set of concrete sensors (acting as
position sensors for a simulated robotic arm).

 The algorithms worked as expected, providing a unique
value from the replicated sensors and although one of them
were faulty (the user had the chance to change data varying
the potentiometers as desired).

 Finally, the algorithms were combined within the kernel,
providing the programmer with a set of functions to work
with abstract sensors. It is possible to create (indicating
physical devices, such as /dev/js0 and type of algorithms) and
then read an abstract sensor, even in the presence of faulty
concrete sensors.

4. SENSING ALGORITHMS

 The algorithms selected to be implemented under RT-
MINIX were taken from [16], and are described below:

Algorithm: Approximate-agreement
Input: A set of sensors, each with a value.
Output: A set of sensors, each with a new value converging

toward a common value.

Step 1: each sensor broadcasts its value.
Step 2: each sensor receives the values from the other

sensors and sots the values into vector v.
Step 3: the lowest τ values and the highest τ values are

discarded from v at each sensor.
Step 4: each sensor forms new vector v' by taking the

remaining values v[i*τ] where i=0,1,... (the smallest
remaining value and every remaining τ'th value in
order).

Step 5: the new value is the mean of the values in v'.

Algorithm: Fast Convergence
Input: a set of sensors, each with a value.
Output: A set of sensors, each with a new value converging

toward a common value.

Step 1: each sensor receives the values from all other sensors

and forms set V.

Step 2: acceptable values1 are put into a set A.
Step 3: e(A) is computed.
Step 4: any unacceptable values are replaced in V by e(A) 2.
Step 5: the new sensor value is the average of the values in

V.

Algorithm: Optimal Region
Input: a set of sensor readings S.
Output: a region describing the region that must be correct.

Step 1: initialize a list of regions, called C, to NULL.
Step 2: sort all points in S into ascending order.
Step 3: a reading is considered active if its lower bound has

been traversed and its upper bound has yet to be
traversed. Work through the list in order, keeping
track of active readings. Whenever a region is
reached where N-τ or more readings are active, add
the region to C.

Step 4: All the points have been processed. List C now
contains all intersections of (N-τ) or more readings.
Sort the intersections in C.

Step 5: output the region defined by the lowest lower bound
and the largest upper bound in C.

Algorithm: Brooks-Iyengar Hybrid
Input: a set of data S.
Output: a real number giving the precise answer and a range

giving its explicit accuracy bounds.

Step 1: each sensor receives the values from all other sensors

and forms set V.
Step 2: perform the optimal region algorithm on V and return

a set A consisting of the ranges where at least N-τ
sensors intersect.

Step 3: output the range defined by the lowest lower bound
and the largest upper bound in A. These are the
accuracy bounds of the answer.

Step 4: sum the midpoints of each range in A multiplied by
the number of sensors whose readings intersect in
that range, and divide by the number of factors. This
is the answer.

 A sensor is called a processing element (PE). The number
of PEs is N and τ is the number of malfunctioning PEs. These
algorithms are intended to return a valid value from a set of
readings from N PEs given τ of them are known (or
supposed) to be wrong; not to establish how many sensors are
faulty.

1 A value is acceptable if it is within distance δ of N-τ other
values.
2 e(A) can be any of a number of functions on the values of A.
The authors suggested average, median, or midpoint as
possible choices of e(A) that may be appropriate for different
applications.

 6

5. TESTING THE ALGORITHMS

E. Static Tests
 To prove that the algorithms have been implemented
properly, a set of tests had to be conducted. At a first step,
data was used "statically", this is, hard-coded in the test
programs. The set of values used in the first test were the
same presented in [16] and shown in Table 1. It simulates a
set of 5 sensors, one of them working in a faulty manner, thus
providing a different value each time a reading was made.
This set of sensors can be thought as belonging to a robotic
arm, providing information about the arm's elbow position,
for example. The measured angle is expressed as a value
along a tolerance (both plus and minus). Those ranges imply
the concept of abstract sensor: "a set of values that contains
the physical variable of interest" [17].

Case S 1 S 2 S 3 S 4 S 5
1 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 3,0 ± 1,6
2 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 1,0 ± 1,6
3 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 2,5 ± 1,6
4 4,7 ± 2,0 1,6 ± 1,6 3,0 ± 1,5 1,8 ± 1,0 0,9 ± 1,6

Table 1 - Sensors and its broadcasted values [16]

 Each one of the algorithms shown above were applied to all
the four cases in Table 1. At any time, the number of sensors
is 5, and the number of sensors with intermittent failures is 1.
These conditions preserve the effectiveness of the algorithms
(because 1<5/2). Results achieved by our own version of the
algorithms running under RT-MINIX were the same stated in
[16], thus validating our implementation.

 The algorithms were also tested using another set of values,
this time taken from [18]. Fig. 5 shows both the set of values
and the results to be obtained.

Fig. 5 - Values and regions [18]

 In this example, sensors are represented by arrows (labeled
with letters from A to E), with values once again expressed as
ranges (indicated by numbers on both arrows' ends). The
shaded rectangles are regions that Optimal Region and

Brooks-Iyengar algorithms have to identify, where the circled
numbers above the regions represent the number of
intersections in that region. Finally, arrow R is the interval
where the answer should be found. All algorithms were
applied to this set of values, and their output is shown in Fig.
6.

Testing robust sensing algorithms with static data

Approximate Agreement Alg.: 6.33
Optimal Region Alg. : [4.0..9.0]
Brooks-Iyengar Hybrid Alg.: [4.0..9.0] 6.192
Fast Convergence Alg. : 6.90

Fig. 6 - Output from second static test

F. Dynamic Tests
 After the algorithms have been successfully proven with
static data, an idea took form in the manner to prove them
once again, this time with dynamic data, i.e. variable from test
to test. To provide the algorithms with such sets of values, a
device was built: four linear 100MΩ potentiometers were
connected to each one of the four resistive inputs on the game
port of a PC. This testbed would use one of the recent real-
time services available in RT-MINIX (Analogic/Digital
conversion capabilities through the joystick driver). The
potentiometers can be thought this time as sensors for a valve
in a pipeline, providing information about the valve position,
where the minimum value referring the valve as totally
closed, while the maximum value representing the valve as
totally open. The wiring diagram for the testbed is shown in
Fig. 7.

 An auxiliary program was written to read the four inputs
simultaneously, showing the values on screen. This
application is used to adjust the "sensors" to the desired value,
allowing to simulate a faulty one; positioning it out of range
from the remaining ones (for this test, N=4 and τ=1).

Fig. 7 - Testbed's wiring diagram

 7

 After the model is adjusted to a particular situation, the
main test program is run. At first, a set of readings are taken
from the model. A sensor reading is defined as a value along
with a lower bound and an upper bound. Thus, to make a
sensor reading, three consecutive port readings are made,
repeating this process for each of the four sensors. Each of the
available algorithms are then applied to this set of sensor
readings, displaying the results on screen (see Fig. 8).

Testing robust sensing algorithms with dynamic data

Sensor L. Bound Value U. Bound
 0 578.0 638.0 677.0
 1 614.0 626.0 688.0
 2 312.0 314.0 316.0
 3 604.0 649.0 681.0

Approximate Agreement Alg.: 632.00
Optimal Region Alg. : [614.00..677.00]
Brooks-Iyengar Hybrid Alg.: [614.00..677.00] 645.50
Fast Convergence Alg. : 556.75

Fig. 8 - Output from dynamic test

G. Dynamic Test Summary
As stated earlier, the model provided the ability to set
different sensor conditions, making it easy to conduct several
runs for the dynamic test.

Sensors
1 2

Run

lb v ub lb v ub
A 14,0 15,0 15,0 683,0 684,0 684,0
B 578,0 638,0 677,0 614,0 626,0 688,0
C 473,0 480,0 507,0 480,0 504,0 538,0
D 492,0 503,0 507,0 433,0 506,0 517,0
E 506,0 516,0 546,0 488,0 517,0 520,0
F 535,0 610,0 703,0 519,0 616,0 660,0
G 675,0 686,0 709,0 658,0 682,0 682,0
H 565,0 638,0 688,0 592,0 658,0 706,0
I 555,0 631,0 702,0 532,0 656,0 759,0
J 651,0 667,0 685,0 625,0 706,0 730,0
K 678,0 679,0 680,0 679,0 680,0 681,0
L 678,0 679,0 682,0 681,0 681,0 681,0

Table 2 - Values used in dynamic test (sensors 1 and 2)

 The values used in all the runs are presented in Table 2 and
Table 3, showing for each sensor the corresponding reading,
in three columns: a lower bound (lb), a value (v) and an upper
bound (ub).

 The results obtained after applying each algorithm
available under RT-MINIX to those readings are contained in
Table 4, and are expressed depending on the algorithm, as a
value (v); a range with a lower bound (lb) and upper bound

(ub) or a range and a value. The algorithms are identified by
their initials: AA, Approximate Agreement; OR, Optimal
Region; BIH, Brooks-Iyengar Hybrid and FC, Fast
Convergence.

Sensors
3 4

Run

lb v ub lb v ub
A 683,0 684,0 684,0 683,0 683,0 684,0
B 313,0 314,0 315,0 604,0 649,0 681,0
C 307,0 308,0 308,0 478,0 492,0 550,0
D 308,0 308,0 308,0 482,0 529,0 531,0
E 307,0 307,0 308,0 480,0 510,0 513,0
F 148,0 218,0 308,0 525,0 609,0 680,0
G 148,0 148,0 148,0 674,0 688,0 689,0
H 148,0 179,0 202,0 609,0 647,0 705,0
I 167,0 193,0 201,0 553,0 610,0 657,0
J 191,0 192,0 192,0 647,0 668,0 686,0
K 193,0 193,0 194,0 672,0 679,0 680,0
L 194,0 194,0 194,0 677,0 679,0 681,0

Table 3 - Values used in dynamic test (sensors 3 and 4)

Algorithms

AA OR BIH FC

Run
v lb ub lb ub v v

A 683,5 683,0 684,0 683,0 684,0 683,2 516,5
B 632,0 614,0 677,0 614,0 677,0 645,5 556,7
C 486,0 480,0 507,0 480,0 507,0 493,5 446,0
D 504,5 492,0 507,0 492,0 507,0 499,5 461,5
E 513,0 506,0 513,0 506,0 513,0 509,5 462,5
F 609,5 535,0 660,0 535,0 660,0 597,5 475,0
G 682,0 675,0 682,0 675,0 682,0 678,5 551,0
H 642,5 609,0 688,0 609,0 688,0 648,5 530,5
I 620,5 555,0 657,0 555,0 657,0 606,0 522,5
J 667,5 651,0 685,0 651,0 685,0 668,0 558,2
K 679,0 679,0 680,0 679,0 680,0 679,5 557,7
L 679,0 678,0 681,0 678,0 681,0 679,5 558,2

Table 4 - Results from all runs at the dynamic test

H. Algorithm Comparison
 After the implementation steps and tests were finished,
some comparisons could be drawn:
• Development: none of the algorithms imposed difficulties

in their implementation.
• Response time: no evident differences in response time

from all the algorithms were found.
• Results: Approximate Agreement (AA) and Fast

Convergence (FC) return a value, while Optimal Region
returns a range, and Brooks-Iyengar Hybrid returns a

 8

range plus a value. Optimal Region (OR) and Brooks-
Iyengar Hybrid (BIH) give answers within a narrower
range than input data. As several dynamic tests were
performed, with the model adjusted to different situations,
it was found that the answer from AA always fell inside
the range returned from OR and BIH. With these results in
view, any of the algorithms could be used. However, there
was found that the broader the result range from BIH,
more the difference between the result value of that
algorithm and the answer from AA.

Test
Range

Amplitude
BIH (2)

Value Diff.
AA and BIH

(1)

Relation
(1)/(2)

A 1,00 0,25 25,0%
K 1,00 0,50 50,0%
L 3,00 0,50 16,7%
E 7,00 3,50 50,0%
G 7,00 3,50 50,0%
D 15,00 5,00 33,3%
C 27,00 7,50 27,8%
J 34,00 0,50 1,5%
B 63,00 13,50 21,4%
H 79,00 6,00 7,6%
I 102,00 14,50 14,2%
F 125,00 12,00 9,6%

Table 5 - Analysis of Results from Algorithms

 To know if this deduction could be generalized, range
amplitude (taking ub - lb) and the difference (absolute value)
between the result value for AA and HBI were calculated for
all runs, along with the relation (in percent) among these two
numbers. That information is contained in Table 5, presented
sorted in ascending order by the second column (amplitude of
result range).

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

A K L E G D C J B H I F

Range Amplitude
Value Difference

Fig. 9 - Comparison of Results

 From Table 5 a graph was made (Fig. 9), where the
tendency is confirmed: the broader the amplitude of the result
range in BIH, greater the difference between the result value
of that algorithm and the answer from AA. It can be inferred

that it is convenient to apply Brooks-Iyengar Hybrid in case
of using sensors with a large precision range.

6. CURRENT APPLICATIONS

 The present section is mainly devoted to show several
applications that have been developed using this Operating
System, and a new set of programs being built at present.

I. Supervisory Control And Data Acquisition (SCADA)
 The first developed application was a SCADA program
developed with academic purposes. It was written previously
to run under MINIX and later adapted to execute in a real-
time environment. The SCADA application is built to be used
to supervise a set of industrial processes. Different parameters
can be defined for each process, including ports to be read,
values to be recorded and alarms to be raised. Data acquired
by the program can also be monitored from another computer
through the serial ports. A history log file is generated,
allowing the revision (and printout) of the activity that
occurred during program execution.

 A SCADA tool is a good application to test RT-MINIX
with real processing conditions. It is composed of several
periodic and sporadic real-time tasks running concurrently. It
also includes a set of soft real-time tasks combined with
interactive processes.

J. Model of a Bottle-filling Line
 A prototype of a bottle-filling system (as described in [19])
is currently under construction, with the aim of using RT-
MINIX as the RTOS to control such a real process.

 The proposed system modeled in that work consists in a
number of bottle-filling lines fed by a single vat containing
the liquid to be bottled. The bottle size may differ from line to
line. The tasks of the control system are to control the level,
the pH and the temperature of the liquid in the vat, to manage
the movement and filling of bottles in the various lines, and to
exchange and log information with human operators working
with the individual lines and a supervisor monitoring the
entire system.

 With several concurrent tasks (both periodic and
aperiodic), this prototype will impose RT-MINIX real-world
constraints to play with.

7. PRESENT WORK

 The sensor integration problem and tolerance of failures
from replicated (redundant) sensors can now be studied in
depth with help of RT-MINIX thanks to the incorporated
sensing algorithms. A possible work line is deal with
multidimensional sensors (replacing each interval
corresponding to a physical value by a vector of intervals).

 9

 The algorithms presented in Section 2 are only two
examples of a long and growing list of scheduling algorithms.
Real-time guarantees in the presence of faults along with fault
tolerant scheduling strategies are very interesting fields to
extend the present state of RT-MINIX. Feasible Shortest Path
(FSP) and Linear Time Heuristic (LTH) are models that can
be studied and compared, with a future implementation in
RT-MINIX depending on results to be obtained.

 One of the problems associated with scheduling algorithms
is priority inversion. [20] presents a very clear example to
definitely understand priority inversion, a case that occurred
during the NASA Mars Pathfinder mission in 1997.

 Any task within RT-MINIX can have a priority: if new
scheduling algorithms to be implemented will consider that
value to pick a task instead of another one, care must be taken
in order to handle this characteristic properly. It is possible
that a task with medium priority be scheduled while a high
priority task is waiting for a resource that is blocked by a low
priority task. A solution to that dilemma known as priority
inheritance was identify and proposed in [21]. Tasks should
inherit the right value to avoid priority inversion and
furthermore deadline missing, thus improving the overall
performance of the scheduling algorithms.

8. CONCLUSION

 Fault tolerance, as a key discipline with growing use inside
real-time systems, provides several techniques and schemes
that can and must be used in different areas of such systems:
from specification languages and temporal logic in the
definition steps; the scheduling perspective and replication of
sensors and actuators in the implementation steps.

 This work described how the real-time extensions to the
MINIX operating system, transforming it into RT-MINIX,
have been complemented with fault tolerant sensing
algorithms to allow the development of applications taking
benefits of that kind of services provided from the operating
system kernel. With these extensions, RT-MINIX can be used
as a platform for real-time processing or as a starting point for
adding more real-time services. Robust sensing algorithms
were implemented and tested under RT-MINIX, and are now
available as a service to applications having to deal with
sensor replication.

 MINIX proved to be a feasible testbed for OS development
and real-time extensions that could be easily added to it. This
“new” operating system (a MINIX 2.0 base with real-time
extensions) has a rich set of features, which makes it a good
choice to conduct real-time experiences. The added real-time
services covered several areas:
• Task creation: tasks can be created either periodic or

aperiodic, stating their period, worst execution time and
priority

• Clock resolution management: the resolution (grain) of

the internal clock can be changed to get better accuracy
while scheduling tasks.

• Scheduling algorithms: both RMS and EDF algorithms
are supported, and can be selected on the fly.

• Statistics: several variables about the whole operation are

accessible to the user to provide data for benchmarking
and testing new developments.

• Supervisory Control and Data Acquisition: as a user
application, it makes full use of real-time services.

With these extensions, RT-MINIX can be used as a platform
for real-time processing or as a starting point for adding more
real-time services.

K. Future Work
 Future work may include extending the sensing algorithms
to deal with multidimensional sensors, (replacing each
interval corresponding to a physical value by a vector of
intervals). Fault tolerant schedulers must be studied and
integrated in a next version of RT-MINIX, providing the
programmer with a specialized and improved fault-tolerant
environment.

9. ACKNOWLEDGEMENTS

 This work was partially supported by the UBA-SECYT
research project TX-004, "Concurrency in Distributed
Systems".

 All the related source code can be obtained at
http://www.dc.uba.ar/people/proyinv/cso/rt-minix together
with downloading and installation instructions.

10. REFERENCES

[1] J. Laprie, “Dependable Computing and Fault Tolerance:
Concepts and Terminology”, 15th Annual Int.
Symposium on Fault-Tolerant Computing, pp 2-11, June
1985.

[2] A. Tannenbaum, “A Unix clone with source code for
operating systems courses”, ACM Operating Systems
Review, 21:1, January 1987.

[3] B. Srinivasan. KURT: The KU Real-Time Linux. Online
at http://hegel.it.ukans.edu/projects/kurt

[4] H. Tokuda, T. Nakajima, P. Rao. Real-time MACH:
Towards a predictable real-time system. Proceedings of
USENIX MACH Workshop, volume 1, 1990.

[5] M. Barabanov, V. Yodaiken. RT-Linux: A Real-Time
UNIX. Online at http://luz.cs.nmt.edu/pub/rtlinux

 10

[6] J. Stankovic, K. Ramamrithman. The design of the
Spring kernel. In Proc. of 8th RealTime Systems
Symposium. 1991.

[7] M. Saksena, J da Silva, A. Agrawala. Principles of Real-
Time Systems, chapter Design and Implementation of
Maruti. Prentice-Hall, 1994.

[8] K. Jeffay, D. Stone, D. Poitier. Kernel support for
efficient, predictable real-time systems. Proceedings of
the IEEE Workshop on RTOS, pp. 8-31, 1991.

[9] LynxOS – Hard Real-time OS Features and Capabilities,
online at http://www.lynx.com/products/ds_lynxos.html

[10] QNX Realtime OS, online at
http://www.qnx.com/products/qnxrtos.htm

[11] G. Wainer, “Implementing Real-Time Scheduling in a
Time-Sharing Operating System”, ACM Operating
Systems Review, July 1995.

[12] P. Rogina and G. Wainer, “New Real-Time Extensions
to the MINIX operating system”, Proc. of 5th Int.
Conference on Information Systems Analysis and
Synthesis (ISAS'99), August 1999.

[13] D. Polakoff, P. Rogina, W. Ruaro, E. Szulsztein, G.
Wainer, “Real-time modifications of the Minix
Operating System” (in Spanish), Internal Report, CS
Dept., FCEyN, UBA, December 1997.

[14] V. Paulik, "Joystick device driver for Linux", source
code and installation details available online at
ftp://atrey.karlin.mff.cuni.cz/pub/linux/joystick/joystick-
0.8.0.tar.gz

[15] N. Wolowick, M. Cuenca Acuña, G. Wainer, “Joining
the scheduling queues in Minix Operating System” (in
Spanish), Internal Report, CS Dept., FCEyN, UBA,
July 1998.

[16] R. Brooks, S. Iyengar, “Robust Distributed Computing
and Sensing Algorithm”, IEEE Computer, pp 53-60,
June 1996.

[17] K. Marzullo, “Tolerating failures of continuous-valued
sensors”, ACM Transactions on Computer Systems,
8(4):284-304, November 1990.

[18] D. Jayasimha, “Fault Tolerance in a Multisensor
Environment”, Dept. of Computer Science, The Ohio
University, May 1994.

[19] P. Ward, S. Mellor, “Structured Development for Real-
Time Systems”, Appendix B, Yourdon Press, 1985.

[20] M. Jones, What happened on Mars?, document available
on line at http://www.cs.cmu.edu/afs/proejct/art-
6/www/mars.html

[21] L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance
Protocols: An Approach to Real-Time Synchronization.
IEEE Trans. on Comp., 39:1175-1185, September 1990.

 11

	Departamento de Computación
	Facultad de Ciencias Exactas y Naturales
	Universidad de Buenos Aires
	INFORME TÉCNICO
	INTRODUCTION
	REAL-TIME EXTENSIONS TO MINIX
	Analogic-Digital Conversion
	Joined Scheduling Queues
	Level 3

	Real-Time Metrics

	FAULT TOLERANCE CAPABILITIES
	Replicated Sensors

	SENSING ALGORITHMS
	TESTING THE ALGORITHMS
	Static Tests
	Dynamic Tests
	Dynamic Test Summary
	Algorithm Comparison

	CURRENT APPLICATIONS
	Supervisory Control And Data Acquisition (SCADA)
	Model of a Bottle-filling Line

	PRESENT WORK
	CONCLUSION
	Future Work

	ACKNOWLEDGEMENTS
	REFERENCES

