

MINIX4RT: A Real-Time Operating

System Based on MINIX

Pablo Andrés Pessolani

ABSTRACT
Tanenbaum’s MINIX Operating System was extended with a Real-Time microkernel and services

to conform MINIX4RT, a Real-Time Operating System for academic uses that includes more flexible

Interprocess Communications facilities supporting basic priority inheritance protocol, a fixed priority

scheduler, timer and event driven interrupt management, statistics and Real-Time metrics gathering

keeping backward compatibility with standard MINIX versions.

Keywords: Operating Systems, Minix, Interrupt Handling, Real-Time.

Presented to the Universidad Nacional de La Plata

of the Requirements for the Degree of Master on Computer Networks.

February 2006

Thesis Director: Ph.D. Silvio Gonnet

Thesis Co-Director: Eng. Armando De Giusti

This thesis is dedicated to my lovely daughters Flor and Vicky, to the "love of

my life" Ana, and to my "iron willpower" parents Merce and Pety.

Acknowledgments

I would like to express my sicere gratitude to Dr. Silvio Gonnet for his suggestions, dedication and

vast patience as thesis director.

I would like to thanks Nicolás Cesar and Felipe Ieder for their contributions with the system

latency and timeliness tests and German Maglione for supplying the IBM Thinkpad 370 notebook

used in the implementation and tests of MINIX4RT.

I acknowledge help received from Telecom Argentina S.A. for sponsoring my UNLP Master career,

the Department of Information Systems of UTN-FRSF for sponsoring the presentation of articles

about MINIX4RT in the Argentine Symposium of Technology 2004/5 and the Postgraduate Office of

UNLP for its attention and patience.

This acknowledgment would be incomplete if I forgot to mention my whole family for their love,

support, and encouragement throughout this course of study.

PREFACE

MINIX4RT is the result of fifteen years dedicated to study, to research and to teach about

Operating Systems. It is a new open-source Real-Time Operating System intended as teaching tool,

but it can be usable as a serious system on resource-limited computers.

MINIX4RT is a Real-Time branch of the popular MINIX used in grade level Operating

Systems courses. This work discuss the modifications that have been made to MINIX that give it the

ability to support the stringent timing requirements of Real-Time applications, while still giving Non

Real-Time ones access to the full range of MINIX services without any changes.

MINIX4RT does not stops with this thesis. It is the authors intention to conform a team of

developers around the world of people interesting in cooperate with the growth and enhancement of

MINIX4RT.

CONTENTS

1. INTRODUCTION...12

1.1. CONTRIBUTIONS...13

1.2. MOTIVATION ..14

1.3. OTHER RTOS USED IN EDUCATION ..15

1.4. MINIX TIME SHARING FEATURES...16

1.5. RT-MINIX FEATURES ...17

1.6. MINIX4RT FEATURES ..18

1.7. ORGANIZATION ..22

1.8. TERMINOLOGY AND NOTATION ...22

2. ARCHITECTURE AND INTERRUPT HANDLING...24

2.1. MINIX SYSTEM ARCHITECTURE AND INTERRUPT PROCESSING24

2.2. MINIX4RT SYSTEM ARCHITECTURE ..26

2.3. INTERRUPT HANDLING...28

2.3.1. Interrupt Handling Virtualization...29

2.3.2. Hardware Interrupts Emulation ...30

2.3.3. User and Kernel Stacks ..31

2.3.4. Interrupt Handler Types ...32

2.3.5. Interrupt Service Routines ..33

2.3.6. Interrupt Descriptor Data Structure...33

2.3.7. Interrupt Handler Dispatching ...35

2.3.8. Interrupt Handler's Priority ...38

2.3.9. Real-Time Input/Output Tasks..40

2.3.10. Software Interrupts ...40

2.3.11. Returning from System Calls and Interrupts Service Routines.............................41

2.3.12. Flushing Deferred Interrupts..42

2.3.13. Executing Interrupt Handlers ...44

2.3.14. Interrupt Descriptor Timestamp Field..46

2.3.15. Kernel Functions for Interrupt Handling and Synchronization46

2.3.16. Estimating Interrupt Handler Processing Time..48

2.3.17. Nested Interrupts ..50

2.3.18. Real-Time Interrupt Processing ...51

2.3.19. Standard MINIX Non Real-Time interrupts..52

2.3.20. Real-Time Timer-Driven Interrupts..52

2.3.21. Real-Time Event-Driven Interrupts ..54

2.4. PREVENTING INTERRUPT PRIORITY INVERSION...54

2.5. RT-PROCESS DISPATCH LATENCY...55

3. RT-PROCESS MANAGEMENT AND SCHEDULING...57

3.1. MINIX4RT EXECUTION MODES ...58

3.2. REAL-TIME PROCESS CREATION ...58

3.3. RT-PROCESS STATES AND TRANSITIONS...60

3.4. PROCESS DESCRIPTOR REAL-TIME FIELDS ..62

3.5. THE RT-PROCESS SCHEDULER ..64

3.6. PROCESS PRIORITY...65

3.6.1. NRT-Process Priorities...66

3.6.2. RT-Process Priorities ...66

3.7. RT-READY QUEUES MANAGEMENT ..67

3.8. RT-PROCESS TERMINATION ...70

3.8.1. RT-process Termination Using the exit() System Call..70

3.8.2. RT-process Termination Using the signal() System Call..71

3.8.3. Releasing RT-process Resourses and Housecleaning ..71

4. TIME MANAGEMENT...72

4.1. TIMING MECHANISMS ..72

4.2. MINIX4RT TIMER INTERRUPTS ..73

4.3. MINIX VIRTUAL TIMER INTERRUPTS ...75

4.4. TIMER RESOLUTION ...76

4.5. 8253/4 PROGRAMMABLE INTERVAL TIMER PROGRAMMING...78

4.6. ESTIMATING THE TIMER INTERRUPT LATENCY ...80

4.7. REAL-TIME AND NON REAL-TIME TIMER HANDLERS...81

4.8. VIRTUAL TIMERS ...81

4.8.1. Virtual Timers Handling Functions..82

4.8.2. Virtual Timers Queues..84

4.8.3. Executing Virtual Timers Actions...85

4.9. VIRTUAL TIMERS HANDLING: OTHER TESTED APPROACHES87

5. REAL-TIME INTERPROCESS COMUNICATION (RT-IPC)89

5.1. INTRODUCTION ..89

5.2. MINIX IPC PRIMITIVES ..90

5.3. MINIX4RT IPC PRIMITIVES FEATURES..91

5.4. MESSAGE DESCRIPTOR DATA STRUCTURE..93

5.4.1. Message Payload Data Structure ...93

5.4.2. Message Header Data Structure ..94

5.5. THE MESSAGE QUEUE ENTRY DESCRIPTOR ..94

5.6. THE MESSAGE QUEUE DESCRIPTOR ..95

5.7. THE RT-SYSTEM MESSAGE POOL..95

5.8. MESSAGE QUEUES MANAGEMENT ...96

5.9. THE MRT_RQST() KERNEL CALL...98

5.10. THE MRT_ARQST() KERNEL CALL...99

5.11. THE MRT_REPLY() KERNEL CALL...99

5.12. THE MRT_UPRQST() KERNEL CALL ..100

5.13. THE MRT_SIGN() KERNEL CALL ...100

5.14. THE MRT_SEND() KERNEL FUNCTION ...101

5.15. THE MRT_RCV() KERNEL CALL...102

5.16. THE MRT_RQRCV() KERNEL CALL ..103

5.17. USING MINIX4RT IPC KERNEL CALLS ..103

5.18. PRIORITY INVERTION ...104

5.19. BASIC PRIORITY INHERITANCE PROTOCOL (BPIP)..106

5.20. THE PRIORITY CEILING PROTOCOL (PCP) ...109

5.21. COMPLETE PRIORITY INHERITANCE ..110

6. RT-SYSTEM CALLS, KERNEL CALLS AND FUNCTIONS................................111

6.1. MINIX SYSTEM CALLS IMPLEMENTATION ...111

6.2. MINIX4RT SYSTEM CALLS IMPLEMENTATION ..112

6.2.1. RT-System Calls with Message Transfers...112

6.2.2. RT-Kernel Calls without Message Transfers..113

6.2.3. The RT-PID...113

6.3. ADDING NEW RT-SYSTEM CALLS USING MRTTASK ..114

6.4. ADDING RT-KERNEL CALLS WITHOUT MESSAGE TRANSFERS116

6.5. RT-KERNEL FUNCTIONS ..117

7. REAL-TIME PROCESSING RELATED STATISTICS..120

7.1. SYSTEM-WIDE STATISTICS ...120

7.2. INTERRUPTS SERVICE ROUTINES STATISTICS ..121

7.3. PROCESS STATISTICS ...121

7.4. THE IDLE PROCESS ...122

7.5. THE FX KEYS ...123

7.5.1. The Shift-F1 Hot-Key..123

7.5.2. The Ctrl-F1 Key..124

7.5.3. The Shift-F2 Hot-Key..125

7.5.4. The F4 Key..126

7.5.5. The Shift-F4 Hot-Key..127

7.5.6. The Ctrl-F4 Hot-Key...128

7.5.7. The Shift-F5 Hot-Key..129

7.5.8. The F6 Key..130

7.5.9. The Shift-F6 Hot-Key..131

7.5.10. The Ctrl-F6 Hot-Key...132

7.5.11. The F8 Key..133

7.5.12. The Shift-F8 Hot-Key..134

7.6. THE MODIFIED PS COMMAND ..136

7.6.1. The –A Option...136

7.6.2. The –S Option ...136

7.7. THE MRTSTATUS COMMAND ...137

7.7.1. The –s Option..138

7.7.2. The –i Option ..139

7.7.3. The –t Option ..139

7.7.4. The –m Option ..140

7.7.5. The –c Option ...141

7.7.6. The –I Option..142

7.7.7. The –T Option...143

7.7.8. The –M Option..144

8. CONCLUSIONS AND FUTURE WORKS..146

8.1. CONCLUSIONS ..146

8.2. FUTURE WORKS ...146

REFERENCES ...148

APPENDIX A: RT-SYSTEM CALLS AND RT-KERNEL CALLS REFERENCE ..151

A.1. SYSTEM CALLS REFERENCE..151

A.1.1. mrt_RTstart ...151

A.1.2. mrt_RTstop..152

A.1.3. mrt_clrpstat...152

A.1.4. mrt_getiattr ...153

A.1.5. mrt_getiint...154

A.1.6. mrt_getistat ...154

A.1.7. mrt_getpattr ..155

A.1.8. mrt_getpint..156

A.1.9. mrt_getpstat ..156

A.1.10. mrt_getsstat...157

A.1.11. mrt_getsval..157

A.1.12. mrt_restart ..158

A.1.13. mrt_setiattr..158

A.1.14. mrt_setpattr...159

A.2. KERNEL CALLS REFERENCE..161

A.2.1. mrt_rqst...161

A.2.2. mrt_arqst...161

A.2.3. mrt_uprqst...162

A.2.4. mrt_sign ..163

A.2.5. mrt_reply...164

A.2.6. mrt_rcv..164

A.2.7. mrt_sleep...165

A.2.8. mrt_wakeup...166

A.2.9. prt_print ..166

APPENDIX B: SAMPLE PROGRAMS ...168

B.1. MRTSTART.C ..168

B.2. MRTSTOP.C ..169

B.3. MRTTEST1.C...170

B.4. MRTTEST1B.C ..171

B.5. MRTTEST1C.C ..172

B.6. MRTTEST2.C...173

B.7. MRTTEST3.C...173

B.8. MRTTEST3B.C ..174

B.9. MRTTEST3C.C ..175

B.10. MRTTEST4.C...176

B.11. MRTTEST4B.C ..177

B.12. MRTTEST5.C...178

B.13. MRTTEST5B.C ..179

B.14. MRTTEST5C.C ..179

B.15. MRTTEST6.C...180

B.16. MRTTEST6B.C ..182

B.17. MRTTEST6C.C ..183

B.18. MRTTEST6D.C ..184

B.19. MRTTEST6E.C...188

B.20. MRTTEST7.C...191

B.21. MRTTEST7B.C ..192

B.22. MRTTEST8.C...194

B.23. MRTTEST8B.C ..197

B.24. MRTTEST8C.C ..200

B.25. MRTTEST8D.C ..203

B.26. MRTTEST8E.C...207

B.27. MRTTEST9.C...210

APPENDIX C: PERFORMANCE TESTS ...215

C.1. INTERRUPT SERVICE TIME ..215

C.1.1. Delay of RTLinux..216

C.1.2. Interrupt Service Time Tests of MINIX4RT ..217

C.1.3. Interrupt Service Time of Software Interrupts..218

C.1.4. Interrupt Service Time of Event-Driven Interrupts...220

C.1.5. Interrupt Service Time of Timer-Driven Interrupts ..222

C.2. VIRTUAL TIMER TIMELINESS ..223

C.3. RT-IPC PERFORMANCE ...226

C.3.1. Synchronous Message Transfers Tests without BPIP and without Timeouts ...226

C.3.2. Asynchronous Message Transfers Tests without BPIP and without Timeouts .227

C.3.3. Synchronous Message Transfers Tests with BPIP and without Timeouts228

C.3.4. Asynchronous Message Transfers Tests with BBIP and without Timeouts228

C.3.5. Request/Receive Tests with BPIP and without Timeouts..................................228

C.3.6. Synchronous Message Transfers Tests with BPIP and with Timeouts229

C.3.7. Asynchronous Message Transfers Tests with BBIP and with Timouts230

C.3.8. Test Request/Receive Tests with BPIP and with Timeouts231

C.3.9. RT-IPC Tests Results ..232

APPENDIX D: SYSTEM DATA STRUCTURES ...233

D.1. USER-LEVEL DATA STRUCTURES ...233

D.1.1. System-wide Data Structures..233

D.1.2. Interrupt-related Data Structures...233

D.1.3. Process-related Data Structures ..234

D.1.4. Kernel Calls-related Data Structures...235

D.1.5. Message-related Data Structures ...235

D.2. KERNEL-LEVEL DATA STRUCTURES...236

D.2.1. System-wide Data Structures..236

D.2.2. Interrupt-related Data Structures...237

D.2.3. Process-related Data Structures ..238

D.2.4. Message-related Data Structures ...239

GLOSARY ..241

1. INTRODUCTION

A Real-Time Operating System (RTOS) supports Real-Time applications. Real-Time

applications requirements from the Operating System (OS) are much different from those required by

non-time constrained time-sharing applications. MINIX4RT satifies the constrains of many of the

applications that impose stringent timing demands on their OS with disastrosous consequences

resulting from temporal errors.

To assist Real-Time applications designers, RTOS must facilitate efficient interprocess

communication and synchronization, a fast interrupt response time, asynchronous Input and Output

(I/O) and timing related facilities.

Real-Time applications written to run on RTOS make use of and rely on the following system

capabilities [1]:

− A preemptive kernel.

− Fixed-priority scheduling policies.

− Real-Time clocks and timers.

− Asynchronous I/O.

− Queued Real-Time signals.

− Process communication facilities.

Computer science students and professionals working on RTOS need a deep knowledge about

every software component and the interactions with hardware devices considering timing constraints.

RTOS instructors can choose among commercial or free licence software to develop their

laboratory practice. Commercially available RTOSs are too costly and proprietary to be used by

academic institutions. Free licence and open source RTOSs have been designed with emphasis on

predictability as a key design feature with complex source code readability.

The thesis of this work is an academic purpose RTOS designed to present an approach of

adding Real-Time facilities to a standard time-sharing OS. The proposed architecture defines a way to

schedule, manage, and execute Real-Time processes. The resulting system will be able to guarantee

that Real-Time processes will meet their stated deadlines.

The thesis has been proved by building MINIX4RT, a research prototype implementation of

that architecture based on MINIX [2], and then testing the implementation by executing periodic and

non-periodic Real-Time processes using the added Real-Time facilities.

1.1. Contributions

This work makes several contributions to the existing body of knowledge of academic purpose

Operating Systems.

− Architecture: Adds a Real-Time sub-kernel below a general-purpose

OS.

− Interrupt Management: A detailed description of how interrupts are

managed to support Real-Time processing with minimal priority inversion.

− Process Management: It presents a new viewpoint of two domains of

process states, transitions and scheduling.

− Time Management: An original approach is proposed to deal with the

execution of actions triggered by time that minimize the priority inversion

problem.

− System Calls: A detailed description of how System Calls and Kernel

Calls are implemented and how new ones can be added.

− Statistics: The prototype has several methods to collect system states,

parameters and statistics that are useful for teaching, debugging and system

verification.

1.2. Motivation

The goal of the MINIX4RT project is to provide an educational tool for RTOS courses as

MINIX [3, 4, 5] and Linux [6] do for OS Design and Implementation courses.

The decision of adopting MINIX as foundation for this work is based on:

− Documentation Availability: Tanenbaum and Woodhull book [2] is the

main MINIX reference, but plentyful documentation can be found on the

Internet as on http://www.minix3.org, http://minix1.hampshire.edu/, etc.

− Hardware Platform: A PC x386 with 16 Mb of RAM and a hard disk of

100 Mb is enough to run MINIX. These modest hardware requirements

allow old PCs to be recycled for Real-Time laboratories. Moreover, MINIX

can run in emulated environments as BOSCH, VMWare, MS Virtual PC,

QEMU etc. (more information about emulated environments in

http://minix1.hampshire.edu/hints.html#emul-virt). This feature allows

sharing laboratories among courses without additional manteinance and

operational impact.

− Modular and Elegant Design: MINIX is a small UNIX-like operating

system, originally developed by Andrew Tanenbaum as a teaching tool for

operating systems classes. MINIX was designed with a more modular

internal structure than the monolithic UNIX kernel, and this structure affects

the way in which new features could be added to MINIX.

− Existing Applications and Programming Tools: The same project goal

could be reached writing a RTOS from scratch but this strategy implies the

construction of a new user interface to run applications like text editors,

compilers, linkers, etc. that does not need Real-Time services. Using MINIX

as the interface between the Real-Time Kernel and User-space applications

simplifies the development of the system and allows the use of well-known

tools.

− Academic Experience: The author teaches about Operating System in

Facultad Regional Santa Fe of the Universidad Tecnológica Nacional

(Argentine), where MINIX is used as an academic tool since 1993.

MINIX4RT implementation focus on source code readability (perhaps sacrificing

performance) to allow instructors to easily do a multiplicity of grade courses assignments, laboratory

tests and other academic uses with an open source RTOS. Some interesting projects could be:

− Adding new functionalities and System Calls to MINIX4RT.

− Coding and Testing Real-Time scheduling algorithms.

− Coding Servers to handle Real-Time Aperiodic tasks.

− Porting hard Real-Time network protocol stacks as RTNET [7] or

RETHER [8].

− Building Remote Device Drivers to control Robots.

− Build embedded RTOS based on MINIX4RT.

− Add new features and System calls to MINIX4RT to be compliant with

the IEEE POSIX 4 standard.

Plentyful statistics are gathered to make the RTOS more educational about its operation and

helpful for debbuging applications.

1.3. Other RTOS Used in Education

Most RTOS used in education like RTLinux [9], RT-Mach [10], QNX [11], and RT-

MINIX[12, 13] are suitable for Real-Time Systems courses but this fact must not be confused with

teaching how a RTOS works. Those systems are focused on performance, schedulability, research,

commecial market, etc. but not for academic purposes. Their source code readability (if they are

available), complex algorithms and limited documentation do not help for students understanding.

Until the development of MINIX4RT, RTLinux was the system used in laboratory practice

and assignments of the Advanced Operating System course in Facultad Regional Santa Fe of the

Universidad Tecnológica Nacional (Argentine). Even RTLinux is used in education, its kernel source

code is not well documented and requires a deep knowledge of the constant growing Linux kernel. As

basic courses of Operating Systems in Facultad Regional Santa Fe are based on MINIX, MINIX4RT

appears as the natural choice for practice in a RTOS course.

The major algorithms and data structures used by MINIX4RT were created or adapted trying

to achieve a balance between efficiency and simplicity inspired in popular OS as:

− RTLinux [9]: The Virtual Machine (VM) concept limited to interrupt

emulation.

− RT-MACH [10]: RT-Inter Process Communications.

− QNX [11]: Priority queues.

− Windows NT[14]: Interrupt queues.

− Linux [15]: Virtual timers.

− MACH [16]: Message queues.

1.4. MINIX Time Sharing Features

MINIX [2] is a complete, time-sharing, multitasking OS developed from scratch by Andrew S.

Tanenbaum. It is a general-purpose OS broadly used in Computer Science degree courses.

Though it is copyrighted, the source has become widely available for universities for studying

and research. Its main features are:

− Microkernel based: Provides process management and scheduling, basic

memory management, interprocess communication, interrupt processing and

low level I/O support.

− Multilayer system: Allows for modular design and clear implementation

of new features.

− Client/Server model: All system services and device drivers are

implemented as server processes with their own execution environment.

− Message Transfer Interprocess Communications (IPC): Used for process

synchronization and data sharing.

− Interrupt hiding: Interrupts are converted into message transfers.

1.5. RT-MINIX Features

Wainer and Rogina [12, 13] changed MINIX OS to support RT-processing and named it "RT-

MINIX". Its main features are:

− Scheduling Algorithms Selection: Rate Monotonic (RM) and Earliest

Deadline First (EDF) scheduling were included. These strategies were later

combined with other traditional strategies, such as Least Laxity First, Least

Slack First and Deadline Monotonic.

− Joined Scheduling Queues: Process execution priority was implemented

using a multiqueue scheme to accommodate Real-Time processes along

with interactive and CPU-bound tasks.

− Real-Time Metrics collection: Several variables about the whole

operation are accessible to the user to provide data for benchmarking and

testing new developments.

− Timer Resolution Management: The resolution of the Timer can be

changed to get better accuracy while scheduling processes.

Several data structures in the OS were modified to consider processes period, execution time

and criticality. But RT-MINIX does not have its own architecture, it is like a patch for MINIX in

order to provide the user with a set of System Calls to create and manage periodic or aperiodic

processes. That approach implies some academic and functional limitations because:

− It does not have its own architecture: The source code of kernel

functions and fields of data structures that treat with Real-Time issues are

merged with those that treats with non Real-Time ones.

− It does not serve hardware interrupts in priority order: This fact could

produce unbounded priority inversion. While a higher priority interrupt

handler is running, lower priority interrupts could be attended increasing the

interference.

− It has only one level of priority for all Real-Time processes: This fact

reduces the system schedulability. Even worst, MINIX Tasks and Servers

have higher priorities than Real-Time processes. While a RT-process is

running, a standard MINIX Task or Server could preempt it. This is another

case of unbounded priority inversion.

− It uses standard MINIX message transfers as its IPC primitives: MINIX

use FIFO discipline to receive messages from several processes and this

implies that a priority inversion problem is present.

− It does not have any protocol against unbounded priority inversion: Its

utilization in projects that use cooperating processes is limited.

− Increasing the Timer resolution also increases the system overhead: To

increase the Timer resolution, RT-MINIX increases the Timer frequency.

This strategy executes MINIX Timer interrupt handler at higher frequency,

thus increasing the system overhead.

− A Real-Time process can use MINIX System Calls: When MINIX

Server receives a request from a Real-Time process it will be executed on

behalf of it, but without any Real-Time attributes.

− MINIX Timer handler was modified to support RT-alarms: As MINIX

scheduler treats Tasks in FIFO order, other MINIX Tasks could be executed

before the Timer Task increasing the RT-alarms latency.

RT-MINIX defines a new set of signals to indicate special situations, such as missed

deadlines, overload or uncertainty of the schedulability of the set of processes.

1.6. MINIX4RT Features

Existing RTOS can be divided in two categories:

− Systems implemented using somewhat stripped down and optimized (or

specialized) versions of conventional time-sharing OS.

− Systems starting from scratch, focusing on predictability as a key design

feature.

MINIX4RT design is based on the former category using MINIX as the conventional OS. It

offers a predictable RT-computing environment at a lower cost than proprietary RTOS used for

academic purposes. Furthermore, the same applications and tools used to edit text files, compile

programs, list directories contents, etc, which run on MINIX, run without any change on MINIX4RT.

This is a important benefit because there is no need to migrate or cross-compile applications.

The following are desirable characteristics in a RTOS:

− Small kernel size: This it will enable the operating system to be used on

embedded systems.

− Low context-switching overheads: This reduce the process activation

latency and increase system schedulability.

− Fast interrupt service: Often, RTOS respond to external systems

through an interrupt mechanism, therefore a fast interrupt service make the

system more responsive.

− User defined process scheduling: A process could be schedulable

periodically, or triggered by an event, or at specified time, etc. It is desirable

that the user could select the process scheduling that best fit for his

application.

− Provision for user definable priorities: The schedulability of a RTOS

increase with higher numbers of priority levels that the user can define into

his applications.

− Provision for specification of deadlines: The deadline is an important

processing parameter of Real-Time applications. Some scheduling

algorithms use processes’ deadlines to assign priorities (i.e. Deadline

Monotonic Scheduling). The deadline is used in critical situations where a

watchdog monitoring process must be activated when the process could not

meet it deadline.

Most of the characteristics described above are fulfilled by MINIX4RT considered in a

academic environment.

The major features of MINIX4RT are summarized as follows:

− Layered Architecture: As it is explained in Chapter 2, MINIX4RT has a

layered architecture that helps to change a component without affecting the

others.

− Real-Time Sub-kernel: A Real-Time micro-kernel that deals with

interrupts, IPC, time management and scheduling is installed below MINIX

kernel. The advantage of using a microkernel for RTOS is that the

preemptability is better, the size of the kernel becomes much smaller, and

the addition/removal of services is easier.

− Timer/Event Driven Interrupt Management: Device Driver writers can

choice among two strategies of Real-Time Interrupt management.

− Fixed Priority Hardware Interrupt Processing: A priority can be

assigned to each hardware interrupt that let service then in priority order.

− Two Stages Interrupt Handling: Interrupt can be serviced in two stages.

The hardware interrupt handler (inside interrupt time) performs the first part

of the needed work and a software Interrupt handler (outside interrupt time)

does the remaining work.

− Fixed Priority Real-Time Scheduling: Each process has an assigned

priority. The RT-kernel schedules them in priority order with preemption.

− Periodic and Non-Periodic RT-processing: A period can be specified

for a periodic process; the Real-Time kernel schedules it on period

expiration.

− Synchronous/Asynchronous Message Transfer using Message Queues:

The added RT-kernel offers a new set of Real-Time IPC primitives based on

Message Queues.

− Priority Based Message Queue Discipline: A priority based discipline

could be specified on each Message Queue for message dequeueing.

− IPC with Basic Priority Inheritance Protocol support: To avoid the

unbounded priority inversion problem among communicating processes

(explained in Chapter 5).

− Receive and Synchronous Send Timeout Support: To avoid deadlocks

and detect dead processes

− Timer Resolution Management Detached from MINIX Timer: A Timer

interrupt of 50 Hz is emulated for the MINIX kernel eventhough the

hardware Timer interrupt has a higher frequency.

− Process and Interrupt Handlers Deadline Expiration Watchdogs: The

use of watchdog processes is a common use strategy to deal with

malfunctioning RT-processes. When a process does not perform its regular

function in a specified time (deadline) another process (watchdog) is

signaled to take corrective actions.

− Software Timers: They are system facilities used for time related

purposes as alarms, timeouts and periodic processing, etc. One particular

feature of MINIX4RT is that it handles software timer actions in priority

order.

− Statistics and Real-Time Metrics: There are several facilities to gather

information about the system status and performance (detailled in Chapter

7).

It is widely believed that microkernel based systems are inherently inefficient and a multilayer

message transfer kernel has a performance disadvantage when compared with monolithic kernel. But

[17] presents evidence that inefficiency is not inherited from the basic idea but from improper

implementation.

MINIX4RT provides the capability of running Real-Time processes and MINIX processes on

the same machine. These Real-Time processes are executed when necessary no matter what MINIX is

doing.

The Real-Time microkernel works by treating the MINIX OS kernel as a task been executed

under a small RTOS based on software emulation of interrupt control hardware. In fact, MINIX is like

the idle process for the Real-Time microkernel been executed only when there are no Real-Time

processes to run. When MINIX tells the hardware to disable interrupts, the Real-Time microkernel

intercepts the request, records it, and returns to MINIX. If one of these “disabled” interrupts occurs,

the Real-Time microkernel records its occurrence and returns without executing the MINIX interrupt

handler. Later, when MINIX enables interrupts, all handlers of the recorded interrupts are executed.

MINIX4RT can handle devices in two ways:

− Event Driven (ED): An ED-interrupt handler is executed when the

Hardware Interrupt occurs or its execution is delayed until its priority will

be greater than the priority of the current process.

− Timer Driven (TD): A TD-interrupt handler is executed only on the

expirations of its specified period.

The current version of MINIX4RT is based on version 2.0.2 for 32 bits INTEL [18]

processors of MINIX; and thus it requires the same hardware platform.

1.7. Organization

The thesis is organized as follows. Chapter 2 describes Architecture and Interrupt Handling

topics on MINIX, RT-MINIX, and MINIX4RT. Chapter 3 present details of Real-Time Process

Management and Scheduling. Chapter 4 contains a discussion about Time Management. Chapter 5 is

describes Real-Time Interprocess Communication (RT-IPC), priority inversion and the priority

inheritance protocol. Chapter 6 provides a detailled explanation of Real-Time System Calls, Kernel

Calls and Kernel Functions. Chapter 7 is devoted to Real-Time Processing Related Statistics. Chapter

8 describes future works and summarizes the results of this work.

At the end of this document, a reference of MINIX4RT System Calls and Kernel Calls can be

found in Appendix A. Appendix B presents several sample programs. Appendix C describes the set of

tests carried out on the Real-Time system and shows its results and Appendix D shows main system

data structures.

This thesis does not cover neither topics about Memory Management, File System

Management nor Network Managment because MINIX services are used for these issues.

1.8. Terminology and Notation

In Real-Time terminology, a Task is the term often used for a process, but in MINIX

terminology, a Task refers to a special process type used in the implementation of MINIX device

drivers.

Other confusing term in computer science is the IBM-compatible Personal Computer (PC)

device that can produce interrupts at regular periods (ticks). MINIX routines refer to it as the Clock,

but Timer is the correct term for that device.

From here, Real-Time related words will be preceded by "RT-" prefix and Non Real-Time

related words will be preceded by “NRT-“ prefix.

Additional terms used in this document are included in the Glossary to clarify terminology

and notation.

2. ARCHITECTURE AND INTERRUPT HANDLING

This chapter reviews some MINIX background information, its architecture and interrupt

processing needed to understand the MINIX4RT design approch. Also, it give the details of the

MINIX4RT architecture, how interrupt virtualization is accomplished, the type of interrupt handling

that systems programmers could choose to attend devices, and some considerations about priority

inversion, a common problem presents in the design of RT-systems.

2.1. MINIX System Architecture and Interrupt Processing

MINIX is a collection of processes that communicate with each other and with User-level

processes using message passing. This design results on a modular and flexible architecture, making it

easy to replace one component without having even to recompile other modules[2].

MINIX is structured in four layers as it can see in Figure 2.1.

− Layer 1: The kernel that provides context switching, process scheduling,

interrupt handling, basic memory management and IPC.

− Layer 2: Tasks that handle low level I/O operations.

− Layer 3: Server processes that handle System Call services with a

Memory Manager server (MM) and a File System server (FS) (other servers

could be added).

− Layer 4: The User-level processes such init, shells, compilers, editors,

etc.

Each layer only communicates with the ones immediately above and below through the

message passing primitives that scale very easily to distributed systems. Therefore, There is not

difficult to modify or to add new components without breaking what already works making it a good

choice for teaching the design and implementation of an OS.

Figure 2.1: MINIX Architecture.

MINIX message passing primitives have some constraints:

− All messages have fixed and small sizes.

− The queue of waiting processes is in the process table.

− User processes can only communicate with Servers, which in turn

communicate with I/O Tasks.

− Usually, an application does not construct messages by itself, this is

accomplished by the System Calls library code.

Message passing is also used by the kernel to hide hardware interrupts. An interrupt is usually

defined as an event that alters the sequence of instructions executed by a processor [15]. In MINIX,

when a hardware device interrupts the CPU, an interrupt handler is called, but if more time is needed

to complete the job, the handler sends a message to the device Task calling the scheduler on exit. As

the scheduler gives I/O Tasks greater priority than User-level processes and Servers, the device Task

is executed to resume the interrupt service out of interrupt time. This approach is often called two

stages interrupt handling.

An I/O Task is like a kernel thread that share kernel address space but it has its own

processing attributes. The use of an I/O Task to complete the interrupt processing performs well

enough in a time sharing environment but can introduce unbounded delay in RT-processing. Two

factors affects the interrupt service response time:

1. MINIX scheduler uses three priority queues, one for I/O Tasks, one for

Server processes and one for User-level processes. As each queue is

arranged in FIFO order, it is not suitable to be used in time constrained

systems where a priority order is needed.

2. MINIX hides interrupts using message transfers. It is very common that on

each hardware interrupt the kernel sends a message to an I/O Task. This

fact forces a context switch before running the Task increasing the system

latency and reducing the schedulability of RT-processes.

A key component in the Intel x86 hardware architecture is the Interrupt Descriptor Table

(IDT) [18]. The IDT associates each interrupt or exception vector with the address of the

corresponding interrupt or exception handler. The IDT must be properly initialized before the kernel

enables interrupts. The IDT is an array of 8 byte interrupt descriptors in memory devoted to

specifying (at most) 256 interrupt service routines. The first 32 entries are reserved for processor

exceptions and Non-Maskable Interrupts (NMI), the following 16 are assigned to maskable interrupts,

that is, to interrupts caused by Interrupt Requests of hardware devices (IRQs). The remaining entries

are available for processor traps, that INTEL designates as "software interrupts". MINIX defines a

table called irq_table[] that has function pointers to interrupt handlers codified using the C

programming language.

2.2. MINIX4RT System Architecture

As MINIX4RT intends to be used in an academic environment, its design has been done to be

as least intrusive as possible in the standard MINIX source code. Yodaiken and Barabanov [9] have

proposed a separate, small, RT-kernel between the hardware and Linux (often called a sub-kernel) for

RTLinux. The key idea is how interrupt management is done. As result, one RTOS hosts a standard

time sharing OS . Those OSs have their own sets of System Calls.

MINIX4RT follows RTLinux approach where MINIX4RT hosts the standard MINIX time

sharing OS. The left side of Figure 2.2 shows the MINIX OS framed by a dotted line, supported by

the MINIX4RT kernel. At the right side of Figure 2.2 shows RT-handlers, RT-tasks and RT-processes

also supported by the RT-kernel. At the center of Figure 2.2, there is a Task named MRTTASK that

function as a glue among MINIX applications and the RT-kernel (explained in Chapter 6).

Figure 2.2: MINIX4RT Architecture.

It can be consider a RTOS to comprise two distinct classes of executable entities [19]:

1. Processes

2. Interrupt Handlers

Therefore, there is a need of two types of schedulers, one for processes and other for interrupt

handlers. MINIX4RT effectively puts in place a new process scheduler that treats the MINIX kernel

as the lowest priority process executing under the RT-kernel, and an interrupt handler scheduler to

control the order of execution of interrupt handlers.

As NRT-interrupt handlers could block RT-processes or RT-interrupt handlers, the RT-kernel

installs an interrupt dispatcher that executes the handler only if its priority is greater than the priority

of the running RT-process or RT-handler. But, in spite of this fact that the handler could not be

executed, the interrupt is accepted and a RT-kernel code is executed consuming processor time that

produce an interference to the running RT-process or RT-handler.

Under that design, MINIX only executes when there are no RT-process to run, and the RT-

kernel is inactive. Thus, a MINIX process can never disable hardware interrupts or prevents itself

from being preempted, yielding all resources to a RT-process. MINIX kernel may be preempted by a

RT-process even during a System Call, so no MINIX routine can be safely called from a RT-process.

To carry out with the functionalities described in the previous paragraph, the following issues

must be solved:

− Interrupts must be captured by the RT-kernel.

− RT-scheduler and RT-services must be implemented.

− RT-applications need an interface layer to interact with the RT-kernel.

− RT-applications may need transfer data and synchronize with NRT-

applications.

− Full process and interrupt handler preemptability is needed.

2.3. Interrupt Handling

As RTLinux does, MINIX4RT uses the Virtual Machine (VM) concept limited to interrupt

emulation or virtualization. Its microkernel is underneath of MINIX and it runs NRT-processes only

when there are not any RT-process ready to run.

Since interrupts can come at any time, the kernel might be handling one of them while another

one (of a different type) occurs. This should be allowed as much as possible since it keeps the I/O

devices busy. As a result, the interrupt handlers must be coded to run in a nested way.

When each interrupt handler terminates, the kernel must be able to resume execution of the

interrupted process or switch to another process if the interrupt signal has caused a rescheduling

activity or executes another lower priority interrupt handler.

Although the kernel may accept a new interrupt signal while handling a previous one, some

critical regions exist inside the kernel code where interrupts must be disabled. Such critical regions

must be limited as much as possible since, the kernel, and in particular the interrupt handlers, should

run most of the time with the interrupts enabled.

MINIX4RT avoids disabling interrupts for extended periods to improve the system response

time. In spite of that, the RT-kernel disables interrupts (by intervals as short as possible) to protect

data structures that are also accessed by interrupt handlers avoiding race condition. The coarse time

granularity among disabling and enabling interrupts could inflict unpredictable interrupt dispatch

latency.

RT-interrupt handlers can easily be replaced with NRT-handlers without recompiling the

kernel. This feature is especially useful in certain debugging situations.

MINIX4RT operates in two processing modes, that will be explained in Chapter 3:

− Non Real-Time Mode: In this mode, only standard MINIX interrupt

handlers and NRT-processes are executed and a limited number of RT-

System Calls are allowed (i.e. a System Call that enables switching to Real-

Time Mode). The RT-kernel functions are disabled.

− Real-Time Mode: In this mode, the system is controlled by the RT-

kernel and all kind of interrupt handlers and processes can be executed.

When an interrupt occurs, the RT-handler is invoked for a RT-defined

interrupt, otherwise its NRT-handler is called.

The system starts in Non Real-Time Mode. To start the Real-Time Mode a NRT-process must

invoke the mrt_RTstart() System Call.

2.3.1. Interrupt Handling Virtualization

The MINIX kernel disable interrupts for synchronization when it enters into critical

sections avoiding that MINIX could be preempted when a RT-interrupt occurs.

MINIX4RT modifies some functions (and emulate its original behaviour) to avoid

that the MINIX kernel could disable interrupts and could not be preempted by the RT-

kernel. The trick is quite simple because MINIX uses the following functions for interrupt

handling:

− lock(): Disables CPU maskable interrupts (CLI for Intel x86).

− unlock(): Enables CPU maskable interrupts (STI for Intel x86).

− put_irq_handler(): Registers an interrupt handler.

− disable_irq(): Disables a Programmable Interrupt Controller (PIC)

Interrupt ReQuest (IRQ) line specified as a parameter.

− enable_irq(): Enables a PIC IRQ line specified as a parameter.

The exposed operation is guaranteed only is all device drivers and interrupt handler

use those functions to handle interrupts without using assembler instructions or own code.

2.3.2. Hardware Interrupts Emulation

The RT-kernel installs a layer of emulation software between the MINIX kernel and

the interrupt controller hardware. On RT-Mode, the emulator catches all hardware interrupts

and redirects them to either standard MINIX handlers or to RT-kernel handlers. The RT-

kernel provides a framework onto which MINIX4RT is mounted with the ability to fully

preempt MINIX.

Whenever a NRT-interrupt happens during the execution of a higher priority RT-

process, a bit in a bitmap is set by the MRT_IRQ_dispatch() function as it will be explained

in Section 2.3.7. On returns of interrupts or on returns from System Calls the function

MRT_flush_int() is called. This function is devoted to execute all pending interrupt handlers,

but if MINIX has disabled interrupts using the emulated lock() function or the PIC IRQ line

for this interrupt has been disabled with the emulated disable_irq(), the NRT-handler will

not be executed. Later, when the MINIX kernel (virtually) re-enables interrupts, using the

emulated unlock() function, all pending interrupts are executed.

A drawback of this approach is that the MINIX kernel suffers a slight performance

loss when MINIX4RT VM is added due to processing time consumed by:

− The redirection of interrupt handlers to a common interrupt dispatcher.

− The interrupt mask/unmask functions.

− The search of pending interrupts in the interrupt descriptor queues

(explained in Section 2.3.12)

− The deferred execution of interrupt handlers.

− The status and statistical information gathering as part of interrupt

handling.

In consideration of both strengths and weaknesses, this strategy has shown itself to

be flexible because it removes none of the capability of standard MINIX, yet it provides

guaranteed scheduling and response time for critical processes.

The changes to standard MINIX are minimal with the VM approach. This low level

of intrusion on the standard MINIX kernel improves the code maintainability to keep the

RT-related code up-to-date with the latest release of the MINIX kernel.

2.3.3. User and Kernel Stacks

The stack is a LIFO list. Stacks are very useful for passing parameters between

subprograms and for storage of variables or identifiers for recursive programs and languages

with scope-limited variables, such as in "C". Stacks are ideal data structures for an OS

process manager to track the status of processes in various states. In MINIX (and

MINIX4RT) each process has two stacks:

− User-Mode stack: In User-Mode processing, only this stack can be used.

− Kernel-Mode stack: When entering the Kernel-Mode processing, the

system switches to this stack.

On interrupts and system calls, the User-Mode stack is changed to the Kernel-Mode

stack. If new interrupts occur during the service of other interrupts (nested interrupts), the

stack remains in Kernel-Mode.

The variable k_reenter counts the level of reentrancy in the kernel:

− k_reenter = (-1): When the system is in User-Mode.

− k_reenter = 0: When one kernel control path is running. That can be a

system call, an exception/fault handler or an interrupt service routine.

− k_reenter > 0: When more than one kernel control path is running.

This occurs on nested hardware interrupts.

To monitor the Kernel-Mode stack use, each interrupt descriptor (described in

Section 2.3.6) has a field named reenter that keeps the maximum kernel reentrancy level

(k_reenter) for each IRQ. It helps to size the Kernel-Mode stack for specific uses.

As it is expected that a RTOS will receive much more interrupts than a time-sharing

OS, by default, the RT-kernel stack doubles in size MINIX's kernel stack.

2.3.4. Interrupt Handler Types

Not all interrupts have the same urgency. In fact, the interrupt handler itself is not a

suitable place for all kind of actions. Long non-critical operations should be deferred, since

while an interrupt handler is running, the signals on the corresponding IRQ line are ignored.

MINIX4RT defines the following kinds of hardware interrupt handlers:

− Non RT-handler: When the system is in NRT-mode, only NRT-

handlers are executed. When the system is in RT-Mode, the NRT-handler is

executed only if there are not any running RT-process or RT-handler;

otherwise it is marked as triggered for later processing. The execution

priority of NRT-handler is MRT_PRILOWEST.

− RT Event-Driven (ED) handler: When the system is in RT-Mode the RT

ED-handler is executed only if its priority is greater than the priority of the

interrupted RT-process or RT-handler, otherwise it is is marked as triggered

for later processing.

− RT Timer-Driven (TD) handler: This type of handlers does not execute

when the device interrupt occurs. They are executed on Timer Interrupts

defined by a period. On each device interrupt, the handler is marked as

triggered and it will be processed once it reaches its period following a

Timer Interrupt.

The Timer interrupt handling differs from other IRQs; some actions are executed on

interrupt time, but other are delayed to handle time related software facilities named Virtual

Timers (VT) (explained in Chapter 4).

2.3.5. Interrupt Service Routines

At startup, the RT-kernel initializes the IDT (Interrupt Descriptor Table) pointing

each entries of master PIC hardware interrupts to a code generated by the macro

hwint_master(irq). The entries for the slave PIC hardware interrupts are filled with the

address of a code generated by the macro hwint_slave(irq).

In RT-Mode, all interrupt service routines perform the same basic actions:

− Save the registers contents in the Kernel-Mode stack.

− Increase the kernel variable k_reenter (initialized in -1).

− If k_reenter = 0, the state of the User-Mode process is saved, otherwise

the system is already in Kernel-Mode.

− Send an acknowledgment to the PIC that is servicing the IRQ line, thus

allowing it to issue further interrupts.

− Execute the interrupt handler dispatcher MRT_IRQ_dispatch().

− Terminate by jumping to the restart label if the k_reenter = 0 or to

restart1 label for k_reenter > 0. More details in Section 2.3.11.

2.3.6. Interrupt Descriptor Data Structure

This section explains the data structures that supports interrupt handling and how

they are laid out in various descriptors used to store information on the state, statistics and

behavior of interrupt handlers.

The RT-kernel has its own interrupt descriptor table (other than INTEL's IDT)

named MRT_si.irqtab[]. It is an array of MRT_irqd_t data structures that has one descriptor

for each hardware and software interrupt (explained in Section 2.3.10.).

The MRT_irqd_t data structure has the following functional fields (see Appendix D):

− nrthandler: A pointer to a function that is the NRT-handler.

− rthandler: A pointer to a function that is the RT-handler.

− period: The processing period of a TD-interrupt handler in RT-ticks

units.

− task: The RT-handler will not execute, instead a MT_INTERRUPT

message will be sent to the speciried task when an interrupt occurs.

− watchdog: The RT-PID (RT process ID defined by mrtpid_t data type)

of a RT-process that will take corrective actions against RT-handler missed

deadlines. When a handler does not complete it’s work before it’s deadline,

the RT-kernel sends a MT_DEADLINE message to the specified watchdog

process.

− priority: Specifies the handler priority.

− irqtype: Specifies type of handler. It is a logical-OR of the following

attributes:

� MRT_RTIRQ: Real-Time handler (otherwise it will be NRT-IRQ).

� MRT_TDIRQ: Timer-Driven handler (otherwise it will be ED-IRQ).

� MRT_SOFTIRQ: Software interrupt handler, explained in Section

2.3.10. (Otherwise it will be a hardware interrupt handler).

The MRT_irqd_t data structure has the following fields for kernel internal use:

− irq: The IRQ number.

− harmonic: It is the harmonic frequency of the MINIX Timer interrupt

frequency (stored in a system variable named MRT_sv.harmonic) when RT-

processing Mode starts. It is only used for Timer-Driven Interrupt

descriptors to convert the period of a TD-interrupt handler when the user has

changed the Timer interrupt frequency. More details in Chapter 4.

− pvt: A pointer to an assigned VT for TD-interrupt descriptors.

− flags: Some interrupt descriptor status and configuration flags that

determines its behavior.

− shower: A counter for TD-interrupts in the last period (explained in

Section 2.3.20).

− latency: The estimated interrupt handler latency in Timer Hz.

− before: An auxiliary field that stores the Timer-2 latch counter of the

Programmable Interrupt Timer (PIT) in Hz on MRT_IRQ_dispatch() entry.

− next: A pointer to the next interrupt descriptor in the queue.

− prev: A pointer to the previous interrupt descriptor in the queue.

− name: The name of the handler.

The MRT_irqd_t data structure has the following statistical use fields:

− count: An interrupt counter for statistics.

− mdl: A missed deadlines counter.

− maxshower: Stores the maximum value of shower.

− timestamp: The last interrupt timestamp.

− maxlat: The maximum value of latency.

− reenter: Stores the maximum value of k_reenter. (Explained in Section

2.3.3).

2.3.7. Interrupt Handler Dispatching

MINIX4RT VM sets all Hardware Interrupt Service Routines (ISR) labeled as

HWINTxx to call an interrupt dispatcher function named MRT_IRQ_dispatch(). This

function base its decisions to process interrupts based on the interrupt descriptor table

MRT_si.irqtab[](see Figure 2.3).

A RT-kernel variable called MRT_sv.prtylvl stores the current system priority level

of execution. This variable is set to the current process priority or to the running interrupt

handler's priority. It is used to reduce the unbounded priority inversion problem deciding on

the execution of an interrupt handler or to defer it.

If MINIX4RT is running in NRT-mode, the standard interrupt handlers

(irq_tableirq in Figure 2.3) are executed without any interception, deferring and

statistics gathering.

In RT-Mode, the function MRT_IRQ_dispatch() performs the following actions (see

Figure 2.3 and Figure 2.4):

− Some statistics-related variables are updated as:

� The system wide interrupt counter named MRT_sv.counter.interrupts.

� The descriptor interrupt counter named MRT_si.irqtab[irq].count.

� The kernel reentrancy level named MRT_si.irqtab[irq].reenter.

Figure 2.3: Hardware Interrupt Handling.

− If the bit MRT_LATENCY for latency computation has been set in the

descriptor, the timer-2 of the PIT is read before running the handler and its

value is stored in the before descriptor field.

− If a Timer interrupt has occurred:

� The system tick counter MRT_sv.counter.ticks is increased.

� The interrupt descriptor timestamp field is set.

� The Timer interrupt descriptor is marked for deferred processing only

if it has some additional work to do controlled by Virtual Timers (more

in Chapter 4).

� Returns from Interrupt and reenable the IRQ0 of the PIC.

− For interrupts other than the Timer, the interrupt descriptor timestamp

field MRT_si.irqtab[irq].timestamp is set to MRT_sv.counter.ticks.

− If an Event-Driven (ED) interrupt has occurred with its priority greater

than or equal to MRT_sv.prtylvl, the handler is called (Note: higher priority

means a lower value in the priority field). The handler can signal the kernel

to run the RT-scheduler on exit setting a bit (MRT_SCHEDULE) in the

kernel variable MRT_sv.flags.

− If an ED-interrupt has occurred with its priority lower than

MRT_sv.prtylvl, the descriptor is marked for deferred processing.

− If a NRT-interrupt has occurred with its priority greater or equal than

MRT_sv.prtylvl, the handler is called and then exits.

− If a NRT-interrupt has occurred with its priority lower than

MRT_sv.prtylvl, its descriptor is marked for deferred processing.

− If a TD-interrupt has occurred, the bit MRT_TDTRIGGER in flag field

of the interrupt descriptor is set. This bit signals the interrupt associated VT

that the TD-handler must be executed on the next period. The operation of

TD-interrupts using VTs is explained in Chapter 4.

Figure 2.4: Interrupt Handler Dispatching.

2.3.8. Interrupt Handler's Priority

The PIC treats interrupts according to their priority level that are directly tied to the

IRQ number. Higher-priority IRQs may improve the performance of the devices that use

them.

The standard PC hardware has assigned priorities for standard interrupts related to

IRQ number as shown in Figure 2.5. A lower IRQ number implies higher priority. Newer

Advanced Programmable Interrupt Controllers (APICs) allow programmers to change the

priority of each IRQ line. The RT-kernel attends IRQs based on the priority field of their

descriptors.

If a lower priority interrupt occurs during the execution of a running process or

handler, its interrupt descriptor is marked as triggered and its processing is delayed. Later,

after a context switch, a System Call or a Return from Interrupt, the RT-kernel calls

MRT_flush_int() function that scans the queues for interrupt descriptors that has been

triggered and runs their handlers.

MRT_flush_int() alternatively calls MRT_irqd_flush() that scans for triggered

interrupt descriptors and MRT_vtimer_flush() that runs actions of expired VTs (see Section

4.8.3) in priority order.

The following pending interrupt handlers are not executed by MRT_irqd_flush():

− NRT-interrupts once MINIX has (virtually) disabled processor

interrupts using the emulated lock() function.

− All pending interrupt handlers with lower priority than the current

system priority level of execution MRT_sv.prtylvl.

Figure 2.5: IRQ Priorities (from [2]).

Each RT-handler must notify the RT-kernel setting the bit MRT_SCHEDULE in

MRT_sv.flags if it needs to run the RT-scheduler on exit

2.3.9. Real-Time Input/Output Tasks

In MINIX, as in other OSs, each kind of input/output device has a related device

driver. MINIX device drivers have two components:

− An Interrupt Service Routine (ISR) that catchs device interrupts.

− An I/O Task for delayed interrupt processing and to accept requests

from server processes.

A was explained in Chapter 1, Task is a special kind of MINIX process that has its

own state and stack, but shares the kernel address space with the kernel and other Tasks

(explained in Section 2.1). Server processes requests services to Tasks using standard

message transfers. When a Hardware interrupt occurs, the kernel signals the I/O Task

sending it a message, but this fact usually involves a context switch because the Task

preempts the running process when receives the message causing a performance penalty.

MINIX4RT allows device driver writers to adopt the use of RT-Tasks for their

design. As any RT-process, a RT-Task has an assigned priority and any RT-processes could

request services to it using RT-Interprocess Communications (explained in Chapter 5).

The interrupt descriptor associated with that RT-Task can be a defined as a TD-

interrupt or an ED-interrupt setting or clearing the MRT_TDINT bit of the irqtype field of

the interrupt descriptor.

2.3.10. Software Interrupts

One of the main problems with interrupt handling is how to perform longish tasks

within a handler. Often a substantial amount of work must be done in response to a device

interrupt, but interrupt handlers need to finish up quickly and not keep interrupts blocked for

long. These two needs (work and speed) conflict with each other, leaving the driver writer in

a bit of a bind. Therefore it is desirable that the interrupt handlers could delay the execution

of some tasks so that they do not block the system for too long.

As it is explained above, MINIX uses a two stages interrupt management where an

interrupt handler partially process the interrupt and then sends a message to an I/O Task to

resume the interrupt processing. This approach implies at least a context switch to restore

the state of the task.

Linux kernel resolves this problem by splitting the interrupt handler into two halves.

The so-called top half is the routine that actually responds to the interrupt. The bottom half

is a routine that is scheduled by the top half to be executed later, at a safer time.

Programmers have at least three approaches to design Device Drivers:

A. Complete interrupt processing into the handler.

B. Two stages interrupt management like MINIX using RT-Tasks and

message transfers.

C. Two stages interrupt management using Software interrupts as Linux does

with bottom halves.

Triggered Software interrupts are kernel routines that are invoked by

MRT_flush_int() as it do with pending hardware interrupts.

Software interrupt descriptors have the same data structure MRT_irqd_t than

Hardware interrupts descriptors, therefore they have priority, counters, timestamps and other

fields.

The motivation for introducing software interrupt is to allow a limited number of

functions related to interrupt handling to be executed in a deferred manner. This approach

increases the system responsiveness because some work is executed out of interrupt time.

Moreover, the processing overhead is lower than using the I/O Task model because it avoids

the context switch among the interrupted process and the I/O Task. Software interrupts can

be used as kernel threads triggered by time using Virtual Timers.

2.3.11. Returning from System Calls and Interrupts Service Routines

The main purpose of the termination phase of interrupt/exception handlers and

System Calls is to execute the highest priority process, but several issues must be considered

before doing it. The system needs to execute:

− Pending Event Driven Interrupt handlers.

− Pending Software interrupt handlers.

− Virtual Timer Actions (explained in Chapter 4).

− Pending Standard MINIX interrupt handlers

The RT-kernel will execute only those pending issues that have greater priorities

(lower priority field) than the MRT_sv.prtylvl.

Before returning the CPU to User-level Mode those interrupt handlers that has been

deferred must be executed. The RT-kernel scans the interrupt descriptor queue for hardware

and software pending interrupt handlers and invokes only those handlers with priorities

greater than the current process priority. The kernel function that accomplishes with these

issues is MRT_flush_int() (see Figure 2.3).

2.3.12. Flushing Deferred Interrupts

MINIX4RT uses a system of interrupt descriptors queues and a bitmap named

MRT_si.iQ.bitmap to process deferred interrupts. A bit set in the i-th position of the bitmap

implies that at least one descriptor in the i-th interrupt descriptor queue has been triggered

for deferred processing (see Figure 2.6).

An interrupt descriptor is inserted into the queue using the kernel function

MRT_irqQ_ins() (explained in Section 2.3.15), and it remains in the queue even once the

interrupt has been serviced. Those enqueued interrupt descriptors that need service have a

bit (named MRT_TRIGGERED) of the flag field set.

Some test performed by the author during the implementation, proved that inserting

a descriptor when the interrupt occurs and removing it once the interrupt has been serviced,

has less perfomance that keep the descriptors enqueued. Moreover, the processing time

required with the CPU interrupts disabled is reduced improving kernel preemptability.

MRT_flush_int() scans for bits set in two bitmaps, the MRT_si.iQ.bitmap for

deferred interrupts and the MRT_st.tQ.bitmap for expired VTs actions to execute. The scan

stops when the priority of the represented by the bit position is lower than MRT_sv.prtylvl

(see Figure 2.7).

For each bit set in MRT_st.tQ.bitmap, MRT_flush_int() calls MRT_vtimer_flush()

that executes expired VTs actions. This operation is explainded in Section 4.8.2.

For each bit set in MRT_si.iQ.bitmap, MRT_flush_int() calls RMT_irqd_flush() that

scans the interrupt descriptor queue for hardware and software interrupt handlers triggered

to run. A handler is executed only if its descriptor status flags has the MRT_TRIGGERED

bit set and has not been disabled (MRT_DISABLED) by software. Once all triggered

interrupt descriptors in the same queue has been serviced, the bit in MRT_si.iQ.bitmap is

cleared.

Figure 2.6: Interrupt Bitmap and Interrupt Queues.

If one of the handlers has set the MRT_SCHEDULE bit of the system variable

MRT_sv.flags, the scheduler (lock_pick_proc() function) is invoked.

Each interrupt queue descriptor has two counter fields:

− inQ: Records the number of descriptors enqueued. It is increased by the

MRT_irqQ_ins() and decreased by MRT_irqQ_rmv() kernel functions.

− pending: Records the number of triggered interrupts in the queue. It is

increased when some descriptor is triggered by the MRT_irqd_trigger()

kernel function and is decreased by the MRT_irqd_serviced().

Figure 2.7: Flushing Interrupts and Virtual Timers.

Only that queues with (inQ > 1) will be scanned to find the triggered descriptors.

The scanning will stop when (pending = 0).

As during the execution MRT_flush_int(), new interrupts can occur, a lock bit

(MRT_FLUSHLCK) in the kernel variable MRT_sv.flags is set to avoid that MRT_flush_int()

could be called again returning from a nested hardware interrupt. If the nested interrupt has

greater priority than the interrupted handler, another bit named MRT_NEWINT in

MRT_sv.flags is set to notify MRT_flush_int() that it needs to restart the scan again from the

highest priority interrupt queue to find the new triggered interrupt descriptor.

2.3.13. Executing Interrupt Handlers

Before running interrupt handlers, the RT-kernel must (see Fig 2.8):

− Save the current system priority level of execution MRT_sv.prtylvl.

− Set MRT_sv.prtylvl to the Interrupt handler’s priority.

− Restore CPU flags to its previous state.

Figure 2.8: Running Interrupt Handlers.

If the interrupt descriptor flag field has the bit MRT_ISTMSG set, instead of

executing a handler, the RT-kernel sends a MT_INTERRUPT message to the RT-Task

specified in the task field of the interrupt descriptor.

Once the handler exits the CPU flags are saved in the stack and the interrupts are

disabled and an estimation of the handler processing time could be computed (see Section

2.3.16).

The value returned by a hardware interrupt handler notifies the kernel if the PIC IRQ

line must be enabled or not.

2.3.14. Interrupt Descriptor Timestamp Field

MINIX4RT includes a timestamp field in the interrupt descriptor data structure

MRT_irqd_t. For hardware interrupts this field is set by MRT_IRQ_dispatch() to the value

stored in MRT_sv.counter.ticks. For software interrupts timestamp field is filled after the

handler was executed into the MRT_do_handler() function.

The units of the timestamp field are RT-ticks since the last execution of the

mrt_RTstart() or mrt_restart() System Calls.

2.3.15. Kernel Functions for Interrupt Handling and Synchronization

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of

kernel statements is treated as a critical section. It allows a kernel control path to continue

executing even when hardware devices issue IRQ signals, thus providing an effective way to

protect data structures that are also accessed by interrupt handlers [15].

On Intel x86 architecture, when the kernel enters a critical section, it clears the IF

flag of the EFLAGS register to disable interrupts. But, at the end of the critical section, often

the kernel can not simply set the flag again. As interrupts can execute in nested fashion, the

kernel does not necessarily know what the IF flag was before the current control path

executed. In these cases, the control path must save the old setting of the flag and restore

that setting at the end [15].

The RT-microkernel has the following functions to control interrupts:

− MRT_lock(): Disables interrupts at the CPU (CLI assembler instruction

on INTEL).

− MRT_unlock(): Enables interrupts at the CPU (STI assembler instruction

on INTEL).

− MRT_saveFlock(&CPUflags): Saves the current CPU Flag Register into

the stack and then clears the IF (interrupt flag) using the CLI assembler

instruction to disable interrupts.

− MRT_restoreF(&CPUflags): Restores the CPU EFLAGS Register from

the stack.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to

disable IRQ lines. That is, the PIC can be told to stop issuing interrupts that refer to a given

IRQ line, or to enable them. Disabled interrupts are not lost; the PIC sends them to the CPU

as soon as they are enabled again. This feature is used by most interrupt handlers since it

allows them to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is more efficient than global

masking/unmasking of maskable interrupts but they are more time consuming.

The RT-microkernel has the following functions to handle IRQs at PIC level:

− MRT_disable_irq(): Disables an IRQ line at PIC level.

− MRT_enable_irq(): Enables an IRQ line at PIC level.

− MRT_get_PIC(): Reads the PIC mask.

− MRT_set_PIC(): Sets the PIC with a specified mask.

Interrupt descriptors are used to store information on the state, statistics and

behavior of interrupt handlers. The RT-kernel has the following functions to handle interrupt

descriptors:

− MRT_irqd_set(): Sets all fields of an interrupt descriptor.

− MRT_irqd_free(): Removes an interrupt descriptor from its interrupt

descriptor queue. It resets all fields of an interrupt descriptor. The RT-

handler and NRT-handler points to the spurious_irq() handler.

− MRT_softirq_set(): Assigns a new interrupt descriptor from the software

interrupt descriptor pool, then sets the descriptor using MRT_set_irq().

− MRT_softirq_free(): Removes the descriptor from the interrupt

descriptor queue using MRT_irqd_free() and frees the descriptor to the

software interrupt descriptor pool.

− MRT_irqQ_ins(): Inserts an interrupt descriptor into an interrupt

descriptor queue.

− MRT_irqQ_rmv(): Removes an interrupt descriptor from an interrupt

descriptor queue.

Two kernel macros can be used to disable/enable descriptors:

− MRT_disable_irqd(): disables an interrupt descriptor in such a way that

it will not be executed by the kernel even if triggered.

− MRT_enable_irqd(): enables an interrupt descriptor to be executed by

the kernel if triggered.

Those macros set/clear the bit MRT_DISABLED in the flag field of the interrupt

descriptor that is checked before running the handler.

2.3.16. Estimating Interrupt Handler Processing Time

A vital characteristic of a RTOS is how responsive is in servicing internal and

external events. These events include external hardware interrupts, internal software signals,

and internal Timer interrupts. One measure of responsiveness is latency, the time between

the occurrence of an event and the execution of the first instruction in the interrupt code. A

second measure is jitter, the variation in the period of nominally constant-period events.

One of the most common measurements requested to RTOSs is the Interrupt Service

Time[20]. It is used to measure the effectiveness of a RT-kernel at dealing with extremely

high-priority interrupts or emergency interrupts. Often a peripheral must be serviced within

a certain time limit after an event. For example, a packet must be read from a network port

before the next on arrives.

The Interrupt Service Time (Tist) is the maximum time taken to respond to an

interrupt request. It includes the time it takes for the current instruction to complete, the time

for the CPU to respond to the interrupt (Til) and the interrupt handler processing time (Tint)

(see Figure 2.9).

Tist = Til + Tint

Understanding the relative size of delays is important to the design of the RT-

system. Most sources of delay in a RT-kernel are due to either code execution or context

switches. Virtually all of these delays are fixed in length and repeatable. Bounded and

repeatable is the fundamental characteristic desired of a RT-kernel.

Interrupt Service Time are not fixed in length. Because an interrupt is, by definition,

an asynchronous event, an Interrupt Service Time depends on the state of the machine when

the interrupt occurred. This state is a function of both the hardware and the software used in

the system.

MINIX4RT uses the Timer-2 of the Programmable Interrupt Timer (PIT) to

estimates the interrupt handler processing time (Tint). The PIT is programmed in

SQUARE_WAVE mode and the divisor latch is set to 0 (to get a 65536 latch value) and its

frequency is 1193182 [Hz], therefore its period is 65536/1193182 = 0.0549 [s].

At the start of MRT_IRQ_dispatch() kernel function, the value of the counter of the

Timer-2 latch of the PIT is stored in the before field of the interrupt descriptor. On handler

return, the counter is read again and the handler processing time could be estimated as the

difference between those two values. The time units of the estimated value are PIT Hz or

(1193182)
-1
 [s] = 8,38x10

-7
 [s] = 0.838 [µs].

Figure 2.9: Interrupt Service Time (from [11]).

While the estimated interrupt handler processing time is not so useful as the

Interrupt Service time (Tist), it can be used to compare performance among several handler

algorithms.

The PIT Timer-0 is programmed in SQUARE_WAVE mode as Timer-2. The PIT

signals the Timer Interrupt once the Timer-0 counter reaches zero. As the Timer-0 remains

decreasing the counters, during the execution of the Timer handler, the value of the Timer-0

counter lets compute the latency of the Timer handler. The estimated value by this method

represents the Interrupt Latency (Til) of the Timer interrupt.

2.3.17. Nested Interrupts

As has been mentioned above, MINIX4RT supports nested interrupts. Worst-case

timing considerations for unmasked interrupts must be included in the computation of the

service time for all interrupts currently being processed.

The following criteria is established for nested interrupts:

− A higher or equal priority interrupt will preempt a running handler. The

computation time of the higher priority handler must be added to the Service

Time as a Blocking Time.

− A lower priority interrupt will not preempt a running handler. The

execution of the new interrupt handler will be deferred for later processing

and the function MRT_flush_int() will not be invoked on exit to reduce the

Blocking Time. This blocking time is a priority inversion that must be added

to the running handler service time. It must be consider only once because

the lower priority interrupt will be disable at PIC level until the handler will

re-enable it.

Once the handler exits, the RT-scheduler could be invoked and another process

preempts the former as Process B and Process C preempts Process A in Figure 2.10.

Next MINIX4RT releases will include an interrupt mask array named

MRT_sv.mask[] used to change the PIC mask before running a handler/process to avoid that

could be interrupted by a lower priority interrupt. The array items are filled by the

MRT_irqd_set() kernel function based on the interrupt descriptor's priority. When a new

interrupt descriptor is set, all items of the MRT_sv.mask[] array are recomputed with PIC

masks that consider the new descriptor's priority and the IRQ lines that must be disabled

when the process/handler with this priority will run.

Figure 2.10: Nested Interrupts (from [11]).

2.3.18. Real-Time Interrupt Processing

The following categories of real-time implementations are proposed in [21]:

− Event Driven Implementation

� Integrated Interrupt Event Driven Scheduling: Is integrated in the

sense that hardware interrupt priorities are matched with the software

process priorities. All processes are initiated by external interrupts.

� Non-Integrated Interrupt Event Driven Scheduling: The priority of

the interrupt associated with process arrival has no correspondence to the

software priority of the process, and is thus non-integrated.

− Timer Driver Implementation

� Timer Driven Scheduling: A timer expires every Ttic seconds causing

a non-maskable interrupt that force a scheduling point. The scheduler

moves all processes that have next scheduling points greater or equal

than the current time to the ready queue.

� Timer Driven Scheduling with counter: The Timer handler

decrements a counter on every timer interrupt and will only invoke the

scheduler when the counter expires. The counter limits the scheduler to

run only on Timer interrupts that correspond to process arrivals.

MINIX4RT does not match strictly in any of these categories but it depends on the set

of processes running on the system and the type of hardware where it runs.

MINIX4RT could be considered as an Event Driven with Non-Integrated Interrupts

Scheduling and Timer Driven with counter system.

− Event Driven: On ED-interrupts the handlers are called without delay.

− Non-Integrated Interrupts: Hardware interrupt priorities could no match

with process priorities.

− Timer Driven with counter: The RT-Timer interrupt handler (VT really)

invokes the scheduler only when a TD-process must be scheduled or when a

TD-interrupt has occured in the last timer period.

2.3.19. Standard MINIX Non Real-Time interrupts

In RT-mode, NRT-handler are executed only if there are not a RT-process or RT-

handler running when the NRT-interrupt occurs. The handler execution is delayed until

MRT_flush_int() invokes it.

2.3.20. Real-Time Timer-Driven Interrupts

Some devices will raise interrupts at high rates but the interrupt processing can be

delayed to be managed by a periodic process in the next schedule (Timer Driven).

Other devices do not raise interrupts, and a periodic process can be created to poll

the devices checking their status and taking appropriated action.

This kind of interrupt processing lets that more than one interrupt occur in a time

period without running the handler. The handler only is executed at a specified period

reducing the system overload. MINIX4RT assigns a VT for the TD-interrupt descriptor.

The processing of a TD-interrupt handler has the following stages (see Figure 2.11):

− The TD-interrupt occurs and MRT_IRQ_dispatch() sets the

MRT_TDTRIGGER bit in the flag interrupt descriptor field to signal the

descriptor for later processing when its assigned VT reaches its period. The

shower field (counts the number of TD-interrupts since the last period) is

increased.

− On each Timer interrupt, MRT_IRQ_dispatch() checks for expired VTs.

If any VT has expired, the Timer handler is triggered and it will run in the

next call to MRT_flush_int().

− MRT_flush_int() runs the Timer handler that enqueues expired VTs for

later processing of their actions. More details in Chapter 4.

− MRT_flush_int() calls MRT_vtimer_flush() that runs actions of those

expired VTs. The action of a VT assigned to a TD-interrupt handler is

MRT_ACT_IRQTRIG, that triggers the descriptor using MRT_irqd_trigger()

function.

− MRT_flush_int() runs the handler of the TD-handler, afterwards resets

the shower field and the MRT_TDTRIGGER bit in the flag fields of the TD-

descriptor.

Figure 2.11: Timer Driven Interrupts.

Some devices must be serviced by polling. A software TD-interrupt descriptor can be

set associated to a VT with a MRT_ACT_IRQTRIG action type and the period that the device

needs.

The following is a stage of the operations executed:

− On each Timer Interrupt, MRT_IRQ_dispatch() checks for expired VTs.

If a VT has expired, the Timer handler is triggered and it will run in the next

call to MRT_flush_int().

− MRT_flush_int() runs the Timer handler that enqueues expired VTs for

later processing of their actions. More details in Chapter 4.

− MRT_flush_int() calls MRT_vtimer_flush() that runs actions of those

expired VTs. The action of a VT assigned to a TD-interrupt handler is

MRT_ACT_IRQTRIG, that triggers the descriptor using MRT_irqd_trigger()

function.

− MRT_flush_int() runs the TD-handler that polls the device to check if it

needs attention.

2.3.21. Real-Time Event-Driven Interrupts

When MRT_IRQ_dispatch() is invoked by a ED-interrupt, it checks if the priority of

the interrupted process/handler (MRT_sv.prtylvl) is greater than the priority of the interrupt.

If it is not, the MRT_IRQ_dispatch() triggers the interrupt descriptor for later processing

using the kernel function MRT_irqd_trigger(). Next, when in the next running of

MRT_flush_int(), all triggered interrupt descriptors are flushed in priority order.

If the interrupt's priority is greater than MRT_sv.prtylvl, the interrupt descriptor RT-

handler is invoked with minimal delay.

2.4. Preventing Interrupt Priority Inversion

In RTOS unpredictability is introduced by interrupts from some devices. A type of unbounded

priority invertion is produced when a higher priority process is executing and lower priority hardware

devices produce an interrupt shower. That showers could only be generated by asynchronous devices

like network, USB, parallel or serial port interfaces. Timer interrupts are periodic and the period is set

by the kernel. Disks, diskettes and CD-ROMs generate interrupts once they finish with commands

commended by the kernel, when the user inserts or removes a removable media, or on error

conditions, but never cause a shower.

MINIX4RT handles interrupts on a preemptive basis; when an interrupt occurs, every

execution at lower interrupt levels is suspended and execution begins immediately on the highest-

level request. Processing continues until the highest-level interrupt processing has been completed.

This places a responsibility on device drivers writers in that system responsiveness is directly related

to how quickly a device driver exits its interrupt routine [22].

Future realeases of MINIX4RT will offer Prioritized Interrupt Disabling. With this feature the

kernel changes the PIC mask raising the interrupt level to avoid that equal and lower level interrupts

could use system resources delaying higher priority processing [23].

When a device triggers an interrupt of a given priority, the PIC masks from the CPU all

interrupts of priority less than or equal to the device interrupt's priority. They become pending. When

the interrupt level on the PIC drops below an interrupt's priority, the PIC lets the interrupt proceed to

the CPU.

Priorized Interrupt Disable will be implemented using the MRT_sv.mask[] array as was

described in Section 2.3.17. Before running interrupt handlers or processes, the RT-kernel checks

their priorities and will change the PIC mask to the value stored in MRT_sv.mask[priority]. The

MRT_sv.mask[] array is filled by the MRT_irqd_set() kernel function.

2.5. RT-Process Dispatch Latency

It is very often that a RT-process is scheduled by an IRQ related with an external event. The

RT-Process Dispatch Latency is an important measurament in RTOS and in MINIX4RT is composed

by (see Figure 2.12):

Figure 2.12: RT-Process Dispatch Latency (from [24]).

− Hardware Delay: Not controlled by the RTOS.

− Finish Current CPU Instruction: Not controlled by the RTOS.

− Interrupt Latency: It is affected by the granularity of the Interrupt

Disabling-Interrupt Enabling periods that the RT-kernel use as a mutual

exclusion mechanism.

− Preprocessing Time: Includes the processing costs of

MRT_IRQ_dispatch() and the top half of HWINTxx functions.

− Interrupt Servicing Time: It is the time consumed by the

MRT_do_handler() function that includes the handler itself.

− Post Processing Time: It includes the time consumed by the RT-

scheduler, and the processing costs of the bottom half of HWINTxx function

that makes the context switch.

3. RT-PROCESS MANAGEMENT AND SCHEDULING

There are several identifiable approaches to marrying RT and NRT technologies such as the

ones listed below [25]:

1. A general purpose OS with added RT-features such as periodic processing

and priority-inversion-free IPC mechanisms.

2. A general purpose OS with a dynamically configurable kernel that is

capable of accommodating user or application specific process, scheduling,

and memory management modules.

3. A subkernel that support coresident OSs partitioning the CPU into two

virtual machines running an unmodified general purpose OS and a RT-

kernel.

Yodaiken [26] proposes a variant of the last approch, where a RT-microkernel threats a time-

sharing OS as the lower priority task that executes only if there are not any RT-process ready to run.

This proposal was adopted for the MINIX4RT kernel and it has the following advantages:

− A clean separation exists between NRT and RT-services.

− The RT-kernel executes in a predictable manner, so it is possible to

analyze the conditions under which RT-processes will be guaranteed to be

feasible.

− The time sharing OS can function correctly with few modifications.

This chapter describes the composition of RT-processes, their states and transitions,

introduces RT-process creation and termination, and gives details about RT-process scheduling.

3.1. MINIX4RT Execution Modes

MINIX4RT starts with the same functionalities as MINIX, therefore it can not run RT-

processes. There must be a NRT-process that invokes a System Call that switches the behavior of the

RT-kernel to allow the execution of RT-processes.

As it was introduced in Chapter 2, MINIX4RT has two execution modes:

− NRT-mode: Any RT-processes neither RT-interrupt handlers can not run

in this mode, therefore the system runs as MINIX does.

− RT-mode: The system runs under the RT-kernel control and RT-

processes and RT-interrupt handlers can be executed sharing the system

with NRT-processes and NRT-interrupt handlers.

To switch between those execution modes the mrt_RTstart() and mrt_RTstop() System Calls

are provided. They use the services of a new Task named MRTTASK (presented in Chapter 2 and

detailled in Chapter 6) that is RT-kernel agent that function as glue among processes and the RT-

kernel.

3.2. Real-Time Process Creation

Only NRT-process can be created and terminated under MINIX4RT. The RT-kernel does not

add new System Calls to create RT-processes. On the other hand a NRT-process is converted into a

RT-process using the mrt_set2rt() System Call. Before converting a process, several parameters (as

priority, period, watchdog, etc.) must be passed to the RT-kernel using the mrt_setproc() System Call.

A RT-process must be converted back into a NRT-process (explained in Section 3.8) ,using

the mrt_set2nrt() System Call, before it can be terminated. When the system runs in NRT-mode, any

process that calls mrt_set2rt() trying to convert itself into a RT-process, receives an error return code.

As there are two kernels with a shared set of processes with their own process states and

transitions each, the bit named MRT_P_REALTIME in the process descriptor status flags

(proc[].p_flags) is set for RT-processes.

The MINIX ready() function enqueues a process descriptor into one of the MINIX Ready

queues only if all bits of proc[].p_flags are cleared (0x00). With the MRT_P_REALTIME bit set, a

RT-process can not be in the READY state, therefore it will be ineligible for the MINIX scheduler.

As is described by Tanenbaum [2], a MINIX process have 3 basic states (see Figure 3.1):

− READY: The process is ready to run and waiting to be selected by the

MINIX process scheduler.

− BLOCKED: The process is blocked because it has done a MINIX

System Call using sendrec() kernel function.

− RUNNING: The process is running under the MINIX kernel control.

Figure 3.1: NRT-Process States and Transitions.

The following are the process states transitions under MINIX:

1. READY to RUNNING: The process has been selected to run by the

scheduler.

2. RUNNING to BLOCKED: The process has done a blocking System Call.

3. BLOCKED to READY: The process has returned from a System Call.

4. RUNNING to READY: The running process has run for its entire alloted

timeslice or it has been preempted by other process with higher priority.

When MINIX runs under the RT-kernel control, a fourth process state named REALTIME is

added. This state is reached when the NRT-process is converted into a RT-process. The ready()

MINIX function is inhibit of inserting the process into the Ready queue, therefore it will be ineligible

for the MINIX sheduler.

Consecuently, the following NRT-process states transitions are the added under MINIX4RT:

5. BLOCKED to REALTIME: The NRT-process has done a mrt_set2rt()

System Call converting itself into a RT-process.

6. REALTIME to READY: The RT-process has done a mrt_set2nrt() System

Call converting itself into a NRT-process. This transition also occurs when

the RT-process calls exit() or when it receives a NRT-signal sent by a

NRT-process.

3.3. RT-Process States and Transitions

After a NRT-process is converted into a RT-process, it changes from one state to another. The

states recognized by the RT-kernel are (Figure 3.2):

Figure 3.2: RT-Process States and Transitions.

− RT-READY: The RT-process is ready to run and waiting to be selected

by the RT-process scheduler.

− RT-BLOCKED: The RT-process is suspended because it has done a

blocking RT-System Call to the RT-kernel.

− RT-RUNNING: The RT-process is running under RT-kernel control.

− STANDARD: The RT-process has been converted into a NRT-process

and must be ignored by the RT-kernel.

The RT-process state transitions are:

A. RT-READY to RT-RUNNING: The RT-process has been selected to run

by the RT-scheduler.

B. RT-RUNNING to RT-BLOCKED: The RT-process has done a blocking

RT-System Call.

C. RT-BLOCKED to RT-READY: The process has returned from a RT-

System Call.

D. RT-RUNNING to RT-READY: The running RT-process has been

preempted by other RT-process with higher priority.

E. RT-BLOCKED to STANDARD: The RT-process has done a

mrt_set2nrt() System Call to convert itself into a NRT-process. This

transition also occurs when the RT-process calls exit() or when it receives a

NRT-signal from another NRT-process.

F. STANDARD to RT-READY: The NRT-process has done a mrt_set2rt()

System Call to convert it into a RT-process.

Really, STANDARD and REALTIME are compound states. REALTIME is the set of

MINIX4RT process states and STANDARD is the set of MINIX process states as it shows in Figure

3.3.

Figure 3.3: RT and NRT Process States and Transitions.

3.4. Process Descriptor Real-Time fields

MINIX uses a process descriptor table to keep the description and status information of every

process in the system. Each process descriptor has a field named p_flags to indicate the reason why a

process is blocked. If p_flags = 0, the process can be scheduled by the MINIX process scheduler.

New fields were added to the process data structure for RT-process management and statistics

collection (see Figure 3.4). The data structure of a RT-process is presented in Appendix D.

 Figure 3.4: Process Descriptor Real-Time Fields.

The RT-process attributes fields are (as part of the rt data structure):

− flags: To keep the RT-process status flags. It has a bit named

MRT_P_REALTIME to distinguish among RT and NRT-processes. The RT-

kernel accepts RT-System Calls from processes with this bit set (with the

exception of mrt_set2rt() System Call). It has another bit named

MRT_P_PERIODIC to distinguish among periodic and non-periodic RT-

processes. A periodic RT-process performs computation at a regular time

interval (period).

− priority: The effective scheduling priority used by the RT-scheduler to

select the next RT-process to run. It usage is explained in Section 3.6.

− baseprty: The priority assigned to the process when it is converted to

RT. It is used by the Basic Priority Inheritance Protocol (BPIP) to restore

the efective priority (explained in Chapter 5).

− period: The scheduling period of a RT-periodic process. It is specified

in RT-timer ticks (explained in Chapter 4).

− limit: A limit for the number of RT-schedulings for the process

(explained in Section 3.5).

− deadline: The RT-process deadline. It is specified in RT-timer ticks.

− watchdog: The RT-PID (RT process ID defined by mrtpid_t data type)

of a RT-process that provides services to protect the RT-process against

deadline expiration. The watchdog process can be programmed to perform

several actions on the occurrence of a RT-process overrun. When a RT-

process does not complete its work before its deadline expiration, the RT-

kernel sends a MT_DEADLINE message to the watchdog RT-process

specified in the process descriptor.

Other RT-process resource management fields are:

− pmq: A pointer to a message queue assigned to the RT-process

(detailled in Chapter 5).

− pvt: A pointer to a VT assigned to the RT-process (only for periodic

processes).

− getfrom: The RT-PID of a RT-process from which the process is waiting

to receive a RT-message.

− sendto: The RT-PID of a RT-process to which the process is waiting to

send a synchronous message.

− pmsg: A pointer to the message received.

− pmhdr: A pointer to the header of the message received.

− pnextrdy: A pointer to the next ready RT-process descriptor in the RT-

ready queue (explained in Section 3.7).

− pprevrdy: A pointer to the previous ready process descriptor in the RT-

ready queue (explained in Section 3.7).

The RT-process statistical fields (st in Figure 3.4) are explained in Chapter 7.

3.5. The RT-Process Scheduler

The process scheduler is the component of the kernel that selects which process to run next.

The scheduler can be viewed as the OS component that divides, using a defined policy, the finite

resource of CPU time between the runnable processes on a system.

The set of rules used to determine when and how to select which process to run next is called

scheduling policy[15]. A scheduler's policy often determines the overall feel of a system and is

responsible for optimally utilizing CPU time. The policy behind a RT-scheduler is simple:

“A priority scheduled Real-Time system must ensure that the highest priority runnable

process can start to run in a bounded time—and the bound needs to be small.” [27].

The first and most common scheduling method in RTOS is preemptive priority-based

scheduling, where a lower priority process is preempted by a higher priority process when it becomes

ready to run. The RT-scheduler always selects the highest priority runnable RT-process for execution.

All unvoluntary context switches are triggered by interrupts. Timer interrupts can cause preemption

due to Timer-Driven RT-process activation. If the priority of the activated RT-process is higher than

the priority of the currently running process, the execution of current is interrupted and the RT-

scheduler is invoked to select another RT-process to run.

The MINIX scheduler is implemented in the pick_proc() kernel function. MINIX4RT

modifies its code calling the RT-scheduler (MRT_pick_proc() function) at first. As consecuence,

when the MINIX scheduler is invoked, the RT-schedulers runs first. MRT_pick_proc() tries to find the

RT-READY process with the highest priority, returning the pointer to the RT-process descriptor. If

there are not such RT-process, the pick_proc() stills running its original code trying to find the highest

priority NRT-process.

MRT_pick_proc() also updates system and RT-process scheduling statistics and controls that

the number of schedulings of a RT-process does not reach the specified limit. Once the limit is

reached, the RT-process is removed from its RT-READY queue. Also, the bit into the flag field

named MRT_STOP is set to avoid that the process could run allowing gathering of RT-process

statistical information.

The RT-scheduler uses an optimized process-selection algorithm, based on a set of ready

queues and a bitmap [28]. Each bit in the bitmap represents a RT-READY queue. If a bit is set, it

means that at least one process is RT-READY in that queue. Typically, the bitmap is scanned for the

highest priority non-empty queue, and the first process in that queue is selected to run.

The RT-scheduler implements fully O(1) scheduling. The algorithm completes in constant-

time, regardless of the number of RT-READY processes.

In MINIX (and other time-sharing OSs), the timeslice is the numeric value that represents how

long a process can run until it is preempted. MINIX4RT does not use a timeslice for preempt a RT-

process. Only a higher priority process can preempt the running process or it must relinquish the CPU

by itself.

When a higher priority process enters the RT-READY state, the RT-kernel calls the RT-

scheduler to find the highest priority RT-READY process to execute (presumably the process that just

became runnable).

3.6. Process Priority

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank

processes based on their worth and need for processor time. Processes with a higher priority will run

before those with a lower priority, while processes with the same priority are scheduled round-robin

(one after the next, repeating).

3.6.1. NRT-Process Priorities

MINIX uses three Ready queues to schedule processes as it is shown in Figure 3.5:

− TASK_Q: Assigned for I/O Tasks.

− SERVER_Q: Assigned for Servers like Memory Manager (MM) and File

System Manager (FS).

− USER_Q: Assigned for User-level processes.

The MINIX scheduling algorithm is simple. It looks up for a process into the READY

queues starting with the TASK_Q, next continues with the SERVER_Q, and finally with the

USER_Q. The scheduler selects the first process it finds in the non-empty highest priority

queue. If all queues are empty, the IDLE process (detailled in Chapter 7) is scheduled.

Figure 3.5: MINIX READY Queues (from [2]).

3.6.2. RT-Process Priorities

Each RT-process has a base priority (the baseprty field) and an effective priority (the

priority field), and is scheduled in accordance with the latter. The base priority of a RT-

process is stablished using the mrt_setproc() System Call before calling mrt_set2rt() System

Call that convert the NRT-process into a RT-process. Both, the baseprty and the priority field

can have a value ranging from MRT_PRIHIGHEST (0x00) to MRT_PRILOWEST (0x0F).

Normally, the effective priority of a RT-process equals its base priority but, it may be

changed by the BPIP (more details in Chapter 5) or the scheduling policy.

The set of RT-ready queues is actually implemented as 16 (MRT_NR_PRTY) separate

queues, assigning one queue for each priority. A ready RT-process could be inserted into the

RT-queue corresponding to its effective priority field in FIFO or LIFO order. The first

process descriptor in the highest RT-ready queue will be selected to run by the RT-scheduler.

The priority field is also used by the RT-kernel to minimize the Interrupt Blocking

time. Only those RT-interrupt handlers with higher priorities are executed while the current

RT-process is running.

3.7. RT-Ready Queues Management

To manage RT-ready queues the RT-kernel have the following data structures:

A set of RT-ready queues, one queue for each priority level (RTM_sp.rdyQ.procL[]).

A bitmap that have one bit assigned for each priority. Initially, all the bits are cleared

indicating that all queues are empty (RTM_sp.rdyQ.bitmap).

When a RT-process becomes runnable (that is, its state becomes RT-READY), the

corresponding bit to the process priority is set in RTM_sp.rdyQ.bitmap, and the process descriptor is

appended to the RT-ready queue in accordance with its priority field.

Finding the highest priority RT-process on the system is therefore only a matter of finding the

first bit set in RTM_sp.rdyQ.bitmap. Because the number of priorities is fixed, the time to complete a

search is constant and unaffected by the number of running processes on the system.

Each ready queue descriptor (MRT_procL_t) have one pointer to the first process descriptor

and other pointer to the last process descriptor in the queue (see Figure 3.6).

A process descriptor can be inserted into a queue in FIFO or LIFO order. Processes of the

same priority will be managed under a FIFO policy, but sometimes a process that inherits its priority

by the BPIP must be inserted into a queue in LIFO order (explained in Chapter 5).

Each queue descriptor also contains a field named inQ that counts the current number of

runnable RT-processes in the queue and a field named maxinQ that keeps the highest value of the inQ

field for statistics.

The following kernel functions help to manage RT-ready queues:

− MRT_rdyQ_app(): Appends a process descriptor at the tail of a RT-

ready queue.

− MRT_rdyQ_ins(): Inserts a process descriptor at the head of a RT-ready

queue.

− MRT_rdyQ_rmv(): Removes a process descriptor from a RT-ready

queue.

Several kernel functions operate on RT-ready queues:

− MRT_pick_proc(): The RT-scheduler searchs for the highest priority

ready-to-run RT-process.

− MRT_inherit(): RT-IPC could change the priority of the destination

process of a message. This function removes a process descriptor from its

current RT-ready queue, inserting it into its inherited RT-ready queue using

MRT_rdyQ_rmv() and MRT_rdyQ_ins() RT-kernel functions.

− MRT_disinherit(): Used to change the priority of a RT-process on

mrt_reply() System Call. This function removes the processs descriptor

from the its current RT-ready queue (MRT_rdyQ_rmv()), and inserts the

descriptor into its inherited or base priority RT-ready queue in accordance to

the BPIP (MRT_rdyQ_ins()).

Figure 3.6: RT-kernel Priority Queues.

As it can be seen, there are similarities between interrupt descriptors queues and process

descriptors RT-ready queues, but there are considerable differences in the queue usage. As it was

described in Chapter 2, once an interrupt descriptor is set, it is inserted into an interrupt descriptor

queue. The queue keeps the descriptor even though it has been triggered and its has been serviced.

The interrupt descriptor can only be removed by the programmer using the MRT_free_irqd() RT-

kernel function. RT-ready queues keep only process descriptors in RT-READY and RT-RUNNING

states. Process descriptors in other states are removed. As the BPIP could change the process priority,

a descriptor could be removed from one RT-ready queue and inserted into other.

MINIX4RT does not have a policy to assign process priorities, but it is easy to create a System

Call that set a Rate Monotonic[29] priority schema using the period field of process descriptors or a

Deadline Monotonic [30] using the deadline field of process descriptors. Dynamic priority algorithms

as Earliest Deadline First (EDF) [31] or Least Laxity First (LLF) [32] requires more complex

changes.

3.8. RT-process Termination

MINIX has four ways to terminate a running process:

− Normal Exit: Invoking the exit() System Call by the process itself

(voluntary).

− Error Exit: The process discovers a fatal error and invokes the exit()

System Call (voluntary).

− Fatal Error: The OS discovers a process fatal error (often a program

bug) and terminates the process using the do_kill() kernel function

(unvoluntary).

− Killed: Other process sends an uncached signal to the process

(unvoluntary).

When MINIX4RT runs in RT-mode, a RT-process must be converted into a NRT-process

before it can be terminated.

3.8.1. RT-process Termination Using the exit() System Call

As it will be explained in Chapter 5, RT-processes can not send/receive messages

using standard send()/receive() MINIX primitives. If a RT-process calls send() or receive()

funcions, it receives an error code on function return.

The exit() System Call uses sendrec(),a single function for doing a send() followed

by a receive(). If a RT-process invokes exit(), it should return with an error, but the exit()

System Call must not return to the calling process. To overcome this issue, two functions

were modified in MINIX4RT as it described below:

− The _exit() Library function invokes mrt_set2nrt() before doing its

standard work. The RT-kernel converts the RT-process into a NRT-process,

and releases the resources owned by the terminanting process (VTs and a

message queue (MQ) (explained in Chapter 5)).

− The exit() function of the MM Server that requests the MRTTASK to

release the VTs and the MQ owned by the RT-process.

3.8.2. RT-process Termination Using the signal() System Call

If a NRT-process sends a signal to a RT-process, the target is converted into a NRT-

process before it can receive the signal. That conversion is accomplished by the modified

sig_proc() function of the MM. The MM sends a MRT_STDSIGNAL message to MRTTASK

returning without any action if the target is a NRT-process or converting the target into a

NRT-process before return.

If the signal sent is uncached by the process, the process will exit releasing RT-

resources before.

3.8.3. Releasing RT-process Resourses and Housecleaning

To keep the system concistency, the RT-kernel (MRT_proc_stop() function) carry

out some housecleaning tasks during the the conversion of a RT-process into a NRT one. It

releases RT-resources owned by the converted process as is described below:

− Any RT-process with pending requests to the converted process will

return with E_MRT_EXITING error code.

− A MT_SIGNAL message is sent to the watchdog RT-process of the

converted process.

− A MT_SIGNAL message is sent to all RT-process with their watchdog

field equals to the converted process. The watchdog fields of that RT-

processes are reset.

− All watchdog fields of RT-interrupt descriptors that equals to the

converted process are reset.

− All pending asynchronous messages sent by the converted process to

other RT-processes are removed from their MQs.

− The VT owned by the process related to a converted periodic process is

stopped (but not released).

− The VT owned by the process related to IPC timeout management is

stopped (but not released).

4. TIME MANAGEMENT

4.1. Timing Mechanisms

Timers are mechanisms that are able to notify the kernel or user programs that a certain

interval of time has elapsed [15], they play an integral role in RT-systems [33, 34].

RT-applications must be able to operate on data within strict timing constraints in order to

schedule application or system events. Timing requirements can be in response to the need for either

high system throughput or fast response time. Applications requiring high throughput may process

large amounts of data and use a continuous stream of data points equally spaced in time.

The following types of timing mechanisms are often used:

− A pause() function: A function pause() is used to suspend the active

process for a specified time. As is explained in [33], an inaccuracy could

occur because the pause function use the Timer interrupt as its time base,

and it depends on the Timer resolution.

− Recovering from Message Loss: Usually a timer is kept while awaiting

for a message. If the message is received, timer is stopped. If the timer

expires, message loss is registered. In such a case, a retry logic is

implemented by restarting the timer and awaiting for the message again. If

the number of retries reaches a threshold, the activity is aborted and

appropriate recovery action is initiated.

− Recovering from Software Faults: Whenever a feature is initiated, a

feature wide timer is kept to ensure feature success. If some software or

hardware module involved in the feature hits recovery, the feature will fail

and the timer expiry will be the only method to detect the feature failure. On

expiry of the timer, the feature may be reinitiated or recovery action might

be taken.

− Sequencing Operations: Timers are used for sequencing time based state

transitions.

− Polling: A timer is kept and the system polls for a condition on every

timeout.

− Periodic Operations: For implementing audits, periodic timers are kept.

On each timer expiry, software audit is initiated.

− Failure Detection: For monitoring the health of other modules, a

module runs a timer. It expects a sanity message periodically from all the

other modules before the expire of the timer. If certain number of sanity

messages are missed in succession from a module, module failure is

declared as failed.

− Inactivity Detection: Timers are also used for detecting the inactivity in

a session.

4.2. MINIX4RT Timer Interrupts

MINIX use three software components to handle time related tasks.

− The Clock ISR: increments de real time counter, decrements the

quantum of the running process and checks it for zero, makes CPU

accounting, and decrements an alarm counter.

− The Clock Task: It is a Task that is scheduled when a Timer interrupt

occurs and there is work to do, such as when an alarm must be sent or a

process has run too long.

− The Synchronous Alarm Task: It is a Task to send messages

(synchronous events) directly to the server that requested the synchronous

alarm, which must be waiting for the message. Synchronous alarms can only

be requested by servers, for example, the network server wanting to time out

if an acknowledgement packet does not arrive in a certain amount of time.

MINIX4RT need to enhance Timer operations accuracy, resolution and predictability needed

by a hard Real-Time OS, therefore it does not use any of the described components because they

implies several context switches. This approach also facilitates software updates when new versions

of MINIX will be realeased because the added source code is less intrusive.

Several time-keeping activities are triggered by interrupts raised by the Programmable Interval

Timer (PIT) on IRQ line 0. Some of these activities need to be executed as soon as possible after the

interrupt is raised, while the other are delayed out of interrupt time [15].

The RT-kernel carry on the following actions related to time:

− Updates the tick count since the RT-mode startup.

− Checks whether the interval of time associated with each timer has

elapsed.

− Executes actions related to expired timers.

− Emulates a Timer interrupt for the MINIX kernel.

− Keeps updated an ordered timer list.

− Inserts and removes timers from free and expired lists.

The following RT-kernel functions deal with important Timer interrupts related activities:

− MRT_irq_dispatch(): As was explained in Chapter 2, this function is

executed on each hardware interrupt. On each Timer interrupt it takes the

following actions:

� It updates the counter MRT_sv.counter.ticks (explained in Section

4.4).

� It copies the MRT_sv.counter.ticks in the Timer interrupt descriptor

timestamp field.

� It checks for VT expirations.

� If the Active VT queue is empty or any VT has expired, it reenables

the Timer IRQ line before returns.

� If at least one VT has expired, it triggers the Timer interrupt

descriptor (its handler is MRT_clock_BH()) for delayed processing, and

reenables the Timer IRQ before returns.

− MRT_clock_BH(): It is the Timer interrupt (Clock in MINIX

terminology) Botton Half. It is executed only if a VT has expired outside

interrupt time called by MRT_flush_int() and it has the PRI_HIGHEST

priority. Its purpose is to change expired VTs from the Active Queue to the

Expired Queue (explained in Section 4.8.2).

− MRT_vtimer_flush(): This function, also called by MRT_flush_int(),

executes Virtual Timer asociated actions (explained in Section 4.8.3).

It is important to note that the Timer ISR merely indicates that at least a VT has expired.

Before the RT-kernel returns from interrupt, the Active VT queue will be checked for expired VTs

and the their actions will be executed.

4.3. MINIX Virtual Timer Interrupts

One important use of VTs is the emulation of Timer interrupts for the MINIX kernel. After

executing mrt_RTstart() System Call, a VT and a software interrupt are assigned to emulate Timer

interrupts for MINIX. The RT-handler field of the software interrupt descriptor points to the original

clock_handler() function of MINIX kernel.

IBM-compatible PCs include a device called 8253/4 Programmable Interval Timer (PIT). The

PIT is programmed by the kernel so that they issue interrupts at a fixed, predefined frequency. These

periodic interrupts are colled Timer ticks and are crucial for implementing the timers used by the

kernel and user´s programs. This device issues a special interrupt on IRQ0 called Timer interrupt,

which notifies the kernel that a time interval has elapsed. Modern CPUs have timers in the local

APICs.

As the frequency of Timer interrupts of MINIX4RT could be greater than in MINIX, the RT-

kernel emulates MINIX Timer interrupts invoking the standard timer handler (the clock_handler()

function) at lower or equal frequency than the PIT.

The Timer interrupt rate of standard MINIX is defined as a constant in HZ as follow:

#define HZ 60 /* clock freq (software settable on IBM-PC) */

MINIX4RT redefines HZ as follow to make more easy the use of integer decimal periods:

#define HZ 50 /* clock freq (software settable on IBM-PC) */

The Timer interrupt rate of MINIX4RT is established by the MRT_sv.tickrate system global

variable. HZ and MRT_sv.tickrate must be harmonic frequencies to virtualize Timer interrupts for the

MINIX kernel only when Timer interrupts occur, therefore they are related by an integer value:

MRT_sv.tickrate = MRT_sv.harmonic * HZ; /* MRT_sv.harmonic = 1,2,3,.....N */

 To preserve the illusion of the standard MINIX tick rate HZ, the MINIX interrupt handler

clock_handler() is called after MRT_sv.harmonic timer interrupts. This interrupt rate is emulated

using a VT with period = MRT_sv.harmonic and MRT_ACT_IRQTRIG action type (See Figure 4.1).

A software interrupt related to the VT is used to defer the processing of the MINIX Timer

interrupt handler with a MRT_PRILOWEST priority. On each VT expiration, the software interrupt is

triggered and its handler is executed by RTM_flush_int() function.

Figure 4.1: MINIX Virtual Timer Interrupt.

4.4. Timer Resolution

The 8253/4 PIT uses an internal oscillator frequency (TIMER_FREQ) at 1,193,180 Hz. It has

a 16 bits LATCH register to set the ratio between the oscillator frequency and the number of interrupts

per second (tick_rate = 1193180/LATCH).

Only some values of LATCH issues integer values of tick_rate as it is show in Table 4.1.

Therefore, other values of LATCH result in accuracy error.

Table 4.1: Integer Values of tick_rate.

LATCH tick_rate

1 1193180

2 596590

4 298295

5 238636

10 119318

20 59659

59659 20

The value of the PIT LATCH is stored in a system global variable named MRT_sv.PIT_latch

and it is initilized as:

MRT_sv.PIT_latch = TIMER_FREQ/MRT_sv.tickrate.

An example illustrates the accuracy error. For a tick rate of 100 [interrupts/s]:

MRT_sv.PIT_latch = 1193180/100 =11931 and a a reminder of 80 Hz

The reminder represents an additional Timer interrupt every (11931*100/80) = 15000 Timer

ticks or 150[s]. The RT-Timer interrupt frequency is 100.0067052217 [Hz] and the RT-Timer period

is 0.009999329522788 [s] resulting in an error in time accuracy of 0.0000670478. Table 4.2 shows

some RT-interrupt frequencies, RT-Timer periods and resulting errors.

As MRT_sv.tickrate is a multiple of HZ, it could be changed setting MRT_sv.harmonic using

mrt_restart(). This System Call can only be used before running any RT-process or when there are not

any RT-process running, otherwise all system time reference (in Timer ticks units) would be

erroneous (i.e. periods, timestamps, tick counters, etc.).

MINIX kernel keeps tracks of the number of elapsed (virtual) Timer ticks since the system

was started in the global system variable named realtime. It is set to 0 during kernel initialization.

MINIX4RT kernel keeps tracks of elapsed (real) Timer ticks since the last mrt_RTstart() or

mrt_restart() System Call invocation in the global system variable named MRT_sv.counter.ticks. It is

set to 0 during RT-system initialization and incremented by one unit when a Timer interrupt occurs,

that is on every Timer tick. Since MRT_sv.counter.ticks is an unsigned 32 bits integer, the time that

makes it overflow depends on the tick rate. However, the RT-kernel handles the overflow using

another kernel variable named MRT_sv.counter.highticks.

Note that since the system updates MRT_sv.counter.ticks and MRT_sv.counter.highticks, only

the former is loaded in the timestamp field of descriptors (interrupt descriptors, process descriptors,

message descriptors, etc). The next versions of MINIX4RT will include the extension of the

timestamp field.

Table 4.2: Period Errors.

Configured

TickRate

[int/s]

Configured

Specified

Period

[s]

Latch Reminder

[Hz]

Real Tick

Rate

[int/s]

Real Period

[s]

Period

Error

100 0.010000000 11931 80 100.006705 0.009999330 0.000067048

200 0.005000000 5965 180 200.030176 0.004999246 0.000150857

500 0.002000000 2386 180 500.075440 0.001999698 0.000150857

1000 0.001000000 1193 180 1000.15088 0.000999849 0.000150857

1500 0.000666667 795 680 1500.85535 0.000666287 0.000569906

2000 0.000500000 596 1180 2001.97987 0.000499506 0.000988954

3000 0.000333333 397 2180 3005.49118 0.000332724 0.001827050

4000 0.000250000 298 1180 4003.95973 0.000249753 0.000988954

5000 0.000200000 238 3180 5013.36134 0.000199467 0.002665147

7500 0.000133333 159 680 7504.27673 0.000133257 0.000569906

10000 0.000100000 119 3180 10026.7227 0.000099733 0.002665147

Table 4.3 shows some wrap around time (in days) of MRT_sv.counter.ticks for some Timer

interrupt frequencies.

Table 4.3: MRT_sv.counter.ticks Overflow Time.

MRT_sv.tickrate

[interrupt/s]

MRT_sv.counter.ticks

Days to Overflow

50 994

100 497

200 249

500 99

1000 50

1500 33

2000 25

3000 17

4000 12

5000 10

7500 7

10000 5

4.5. 8253/4 Programmable Interval Timer Programming

The 8253/4 Programmable Timer provides three independent 16-bit counters called Timer

channels that can count in binary or BCD. It can run in one of the six programmable modes:

− Mode 0: Interrupt on Terminal Count.

− Mode 1: Programmable One-shot.

− Mode 2: Rate Generator.

− Mode 3: Square Wave Rate Generator.

− Mode 4: Software Triggered Strobe.

− Mode 5: Hardware Trigger Strobe.

The programming of a Timer channel is initiated by writing a control word into the control

register port at 43H. The control word has the format shown in Figure 4.2:

Figure 4.2: PIT Control Word Format.

Since the counters are 16 bits long but the I/O port through which data is transferred is only 8

bits long, two data transfer operations to fill the whole counter.

 Setting the bits D5 and D4 to 11 in order to load first the LSB then the MSB as the preset 16-

bit word count for the corresponding counter. Here are some relevant I/O port addresses:

− 40H Timer Channel 0 Counter

− 41H Timer Channel 1 Counter

− 42H Timer Channel 2 Counter

− 43H Timer Control Register

Two RT-kernel functions operates on the PIT Channel 0:

− MRT_set_timer(): Sets the Timer interrupt rate with a frequency of (HZ

*harmonic). The function argument is the harmonic frequency of the

MINIX Timer frequency.

− MRT_read_timer(): Reads the current value of the PIT counter.

4.6. Estimating the Timer Interrupt Latency

When the PIT counter reachs zero, the PIT raise IRQ 0 and resets the counter to the value in

the LATCH. As the PIT remains decrementing the counter, during the execution of the Timer

interrupt handler, the value of the counter lets compute the latency of the handler (See Figure 4.3).

Timer_Handler_Latency = MRT_sv.PIT_latch - MRT_read_timer()

To consider the overhead of executing MRT_read_timer(), the kernel estimates its value at

initialization time and stores the result (in PIT Hz units) into the system variable

MRT_sv.PIT_latency.

Figure 4.3: Estimating Timer Interrupt Latency.

 Applications can get the estimated Timer Interrupt Latency using the mrt_getistat() System

Call for IRQ 0, and the value of MRT_sv.PIT_latency using mrt_getsval() System Call (more details

in Appendix A).

4.7. Real-Time and Non Real-Time Timer Handlers

At startup, the system is not ready for RT-processing (described in Chapter 3). All interrupt

handlers used by the kernel are MINIX NRT-handlers, including the Timer handler that is the

function clock_handler(). When the RT-mode starts, the system enables the use of RT-handlers for

those interrupt descriptors defined as Real-Time (the bit MRT_RTIRQ set in the flag field), including

the RT-Timer handler named MRT_clock_BH().

Sometimes, it is necesary to reconfigure the system to change some parameters without

recompilation and restarting it. The mrt_restart() System Call can be used to change RT-processing

parameters and reset system statistics. One of this parameters is the Timer interrupt frequency, and it

could be changed using the harmonic argument of mrt_restart(). All statistical fields of data structures

are reset because changing the Timer period causes that they will be erroneous as it was explained in

Section 4.4.

4.8. Virtual Timers

A Virtual Timer (VT) is a software facility that allows to take an action at some future

moment, after a given time interval has elapsed; a time-out denotes a moment at which the time

interval associated with a timer has elapsed [15].

Some systems use VTs to handle periodic processing. Once the period of the VT has elapsed,

the periodic process is scheduled, the VT is removed from a queue and inserted in other position of

the queue depending on the period. This approach presents significant overhead to the periodic

process and particulary in those that have small periods.

MINIX4RT uses VTs to manage periodic processing and other related activities. It has

NR_VTIMERS Virtual Timers descriptors data structures defined in kernel space.

A VT descriptor has the MRT_vtimer_t data structure (see Appendix D) with the following

fields:

− period: The period of the VT in RT-ticks.

− nextexp: The number of RT-ticks for the next VT expiration in the

queue (explained in Section 4.8.2).

− limit: The number of expirations until free the VT. A limit of 0 means

that the VT has no expiration limit.

− action: The code of the action to execute on expiration (explained in

Section 4.8.1).

− param: A generic integer used as a parameter for the action on VT

expirations. The param field enables to define a single general-purpose

function that handles the time-outs of several device drivers; the param field

could store the device ID or other meaningful data that could be used by the

function to differentiate the device.

− index: The VT identification number.

− owner: The VT RT-process owner.

− priority: The VT owner's priority. This field is used on VT expirations

to run actions in priority order.

− timestamp: The last expiration timestamp.

− expired: Counts the number of VT expirations.

− next: A pointer to the next VT in the queue.

− prev: A pointer to the previous VT in the queue.

4.8.1. Virtual Timers Handling Functions

The RT-kernel functions that handle VTs are:

− MRT_vtimer_flush(): Searches for expired VTs with equal or greater

priorities than the MRT_sv.prtylvl and runs their actions as was explained in

Chapter 2.

− MRT_vtimer_alloc(): Allocates a VT with the parameters passed as

arguments.

− MRT_vtimer_free(): Reset all parameters of a VT and inserts it into the

VT Free queue.

− MRT_vtimer_ins(): Inserts an VT into the Active/Expired/Free queue.

− MRT_vtimer_rmv(): Removes a VT from the Active/Expired/Free

queue.

− MRT_vtimer_search(): Searches for a VT in a queue.

− MRT_vtimer_run(): Executes a VT action. Once the action has been

executed, the VT is reescheduled for the next period (if expired >= limit) or

it is released to the Free VT queue. The VT actions could be:

� MRT_ACT_NONE: No action is executed.

� MRT_ACT_PERIODIC: Used for periodic processes. This action

wakes up the VT owner process.

� MRT_ACT_MSGOWN: Sends a MT_TIMEOUT message to the VT

owner process.

� MRT_ACT_MSGWDOG: Sends a MT_TIMEOUT message to the VT

owner’s watchdog process.

� MRT_ACT_IRQTRIG: Trigger an IRQ descriptor specified in the

param field.

� MRT_ACT_SNDTO: A send type timeout has expired (see Chapter 5).

� MRT_ACT_RCVTO: A receive timeout has expired (see Chapter 5).

� MRT_ACT_WAKEUP: This action wakes up the VT owner process if

it has called the mrt_sleep() System Call that put the process into the RT-

BLOCKED state.

� MRT_ACT_SCHED: This action wakes up the process specified in

the param field.

� MRT_ACT_DEBUG: Used for debugging purposes. Its prints the

param field in console.

4.8.2. Virtual Timers Queues

The RT-kernel uses several queues for handling VTs. The queues are:

− MRT_st.timerQ: It is the queue for Active VTs ordered by expiration

time (see Figure 4.4). The firstexp field of the queue counts the number of

RT-ticks for the expiration of the first VT. Each VT has a field named

nextexp that counts the number of RT-timer ticks for the expiration of the

next VT in the queue. Once a VT has expired, it is removed from this queue.

− MRT_st.freeQ: It is the queue for Free VTs.

− MRT_st.exp.expiredQ[]: It is an array of queues of expired VTs with

pending actions. There is one queue for each system priority. Once the

action of a VT is executed, the VT is removed from this queue (see Figure

4.5).

Figure 4.4: Active Virtual Timers Queue.

The data structure of a VT queue descriptors (MRT_timerQ_t) has the following

fields:

− first: A pointer to the first VT in the queue.

− last: A pointer to the last VT in the queue.

− firstexp: It counts the number of RT-ticks to the first VT expiration.

− maxper: It is the total amount of nextexp fields of all VTs in the queue.

(only used in the Active queue).

− inQ: The current number of VTs enqueued.

− maxinQ: The maximun number of VTs enqueued.

Figure 4.5: Virtual Timer Expired Queues.

4.8.3. Executing Virtual Timers Actions

Executing VT actions in the Timer handler could produce unpredictable latencies on

high priority processes. As the Timer interrupt descriptor has the highest priority, all VT

actions execute at the highest system priority including those actions of VTs that belongs to

processes with lower priorities. This is another type of unbounded priority inversion.

Executing VT actions in Bottom Halves routines does not help much, because the

VT actions are executed before returning the system to user-mode, therefore the priority

inversion persists.

As it is illustrated in Figure 4.6, the execution of actions of all expired VTs preempt

the execution of a higher priority process.

 Figure 4.6: VT Actions with Unbounded Priority Inversion.

To avoid this problem, the RT-kernel runs expired VT actions in priority order only

if they have higher or equal priorities than MRT_sv.prtylvl (see Figure 4.7).

Figure 4.7: VT Actions Priority Ordered Execution.

Only the execution of actions of all expired VTs with higher or equal priority than

MRT_sv.prtylvl could preempt the execution of a running process or IRQ handler. VT

actions with lower priorities will be executed later when the MRT_sv.prtylvl decline. The

flow diagram is shown in Figure 4.8.

Figure 4.8: Flushing Expired VTs and Triggerd IRQ Descriptors.

4.9. Virtual Timers Handling: Other Tested Approaches

This section dicusses other approaches tested during the development and implementation of

VTs on MINIX4RT.

Varghese and Lauck [34] suggest the use of Timer Wheels to handle a lots of VTs in an

efficient way. This approach has been tested but the coding complexity, larger memory requirements

and its minimal performance improvement on a reduced VT environment move further away the

educational aims of the MINIX4RT project. In spite of that, that approach could be considered for

custom versions or for coding laboratory practice.

When the PIT is used in SQUARE_WAVE mode, increasing Timer resolution implies

increasing the PIT frequency rising the system overhead because the Timer ISR is executed more

frequently.

A better approach [35] to increase the Timer resolution without increasing the PIT frequency

is to execute the Timer handler only in those moments that is needed. Instead of producing interrupts

at higher rates (SQUARE_WAVE mode), the PIT is programmed in ONE-SHOT mode. This means

that on every Timer interrupt, the PIT is programmed to generate an interrupt as soon as the earliest

scheduled VT action. In spite of this feature is not available in the current version of MINIX4RT, it

will be included in the next as an optional operation mode.

5. REAL-TIME INTERPROCESS COMUNICATION (RT-IPC)

5.1. Introduction

The key difference between time sharing OS and RTOS is the need for deterministic timing

behavior in the RTOS. Deterministic timing means that OS services consume only known and

expected amounts of time. Inter-process communication (IPC) by message passing is one of the

central paradigms of most kernel-based and other Client/Server architectures. It helps to increase

modularity, extendibility, security and scalability, and it is the key feature for distributed systems and

applications [36]. Therefore, IPC primitives of a RTOS need to have deterministic execution and

blocking times.

Messages are units of information that pass from the sender to the receiver. Two methods can

be used to message transferences:

− With buffering: The message is sent to a data structure like RT-Mach

ports[10] or Message Queues that stores it until a process receives it.

− Without buffering: The message is sent to a process and the sender must

wait to tranfer the message. This method is known as rendezvous.

Tanenbaum selects the rendezvous approach for MINIX. It has the following semantics:

− When a sender calls send() but the receiver is not waiting that message,

the sender is blocked until the receiver calls receive() for that message.

− When a receiver wants to receive a message but it has not been sent, the

receiver is blocked until the sender calls send() for that message.

Rendezvous approach is fine in a time-sharing environment because it is very rare that two or

more messages are queued into a Message Queue and the avarage queue length would be less than

one but it can not be used for asynchronous communications among processes.

MINIX’s kernel hides interrupts turning them into messages, but interrupts are asynchronous

events. When a I/O device raice an interrupt, its handler traps it, and will try to send() a message to an

I/O Task. If the I/O Task is not waiting for that message, the handler must register this fact and will

try to send the message latter because the kernel can not be blocked. This approach does not help to

much for the implementation of communications protocols where messages can flow from down to

top triggered by interrupts.

In a RT-environment, several messages can be sent to a queue waiting to be received. They

must be treated according the senders´ priorities and must guarantee message delivery in a timely

fashion[10].

MINIX4RT IPC uses unidirectional communication channels called Message Queues (MQ)

consisting of a list that holds messages in kernel space. The number of messages that a MQ can store

can be specified for each RT-process at creation time. Messages have fixed sizes and strict copy to

value semantics.

5.2. MINIX IPC Primitives

MINIX has the following IPC kernel functions:

− mini_send(caller, dest, m_ptr): A message is copied from the caller’s

message buffer pointed by m_ptr to the dest’s message buffer if dest process

it is blocked waiting for that message, otherwise the caller process is

blocked.

− mini_rec(caller, src, m_ptr): If the sender process src is blocked trying

to send a message to the caller process, the message is copied from the src’s

buffer to the buffer pointed by m_ptr and the src process is unblocked,

otherwise the caller process is blocked.

MINIX offers the following primitives in the libc.a library for higher layers:

− send(dest, m_ptr): A message is copied from the sender’s message

buffer pointed by m_ptr to the dest’s message buffer if dest process is

blocked waiting for that message, otherwise the caller process is blocked.

− receive(src, m_ptr): If the src process is blocked trying to send a

message to the receiver, the message is received and src process is

unblocked, otherwise the receiver process is blocked.

− sendrec (dest_src, m_ptr): A send() followed by a receive() to/from the

same process in a single function. It is used for system calls avoiding to

make two transitions from User-mode to Kernel-mode.

5.3. MINIX4RT IPC Primitives Features

Sometimes there are needs to use some type of policy to control the system behavior on

message transfers. That policy may differ for messages sent to request services from those messages

used by Servers to reply that requests. MINIX uses the same mini_send() primitive for both operations

without distinguish among them.

The use of the same function for service requests, for service replies, to signal interrupts, etc.

does not help for the apply a policy for each type of action.

A RT-process can not use MINIX IPC primitives because:

− mini_send() and mini_rec() kernel funcions could change the RT-

process status to READY, and therefore the RT-process would be selected to

execute by MINIX scheduler loosing all its RT-execution attributes.

− As MINIX IPC does not support different behaviors for mini_send(),

any priority inversion avoidance protocols can be applied.

− If a RT-process make a request to a a NRT-process using mini_send(),

the RT-process must wait for the reply until NRT-process will run at NRT-

priority. This is another case of Unbounded Priority Invesion (detailled in

Section 5.17)

As a RT-process can not use MINIX IPC primitives, it is inhibited of making any MINIX

System Calls (except exit() as was explained in Chapter 3).

MINIX4RT offers a variety of new Kernel Calls that let apply different policies depending on

the message transfer use. The term Kernel Calls is used to distinguish the way that they operate

against System Calls. A more detailed explanation will be find in Chapter 6.

RT-IPC Kernel Calls have the following features:

− Synchronous/Asynchronous message transfer using Message Queues.

− Configurable Message Queue size.

− Different beahavior of send operations for requests, replies, signals and

interrupts.

− Timeout support for synchronous primitives.

− Configurable dequeuing policy (Priority order or FIFO order).

− Priority Hand-Off to avoid unbounded priority inversion.

− Basic Priority Inheritance Protocol [37] support to avoid unbounded

priority inversion.

− Sending timestamps and message IDs can be retrieved by the receiver.

− Senders process’s attributes are stored with the message header

(priority, process type, process deadline, etc).

The RT-kernel has a message pool named MRT_sm.pool that has NR_MESSAGES message

queue entries in kernel space. Each message queue entry includes space for the message itself and its

header.

When a NRT-process is prepared to be converted into a RT-process using the mrt_setproc()

System Call a MQ is assigned to it. A MQ has a bounded capacity that quantifies its ability to store

messages. The size requested of the MQ is a field of the mrt_pattr_t data structure passed as function

parameter of mrt_setproc(). The pmq field of the process descriptor is filled with a pointer to the

message queue assigned to the process.

5.4. Message Descriptor Data Structure

A Message Descriptor Data Structure (mrt_msgd_t) is composed by the Message Payload

Data Structure and the Message Header Data Structure described in the next sections (see Appendix

D).

5.4.1. Message Payload Data Structure

MINIX kernel defines six messages types (see Figure 5.1). The sizes of message elements will

vary, depending upon the architecture of the machine; this diagram illustrates sizes on a machine with

32-bit pointers.

MINIX4RT keeps the message formats but without the first two fields (m_source and

m_type) in the Message Payload Data Structure (MRT_msg_t).

Figure 5.1: MINIX Message Types (From [2]).

5.4.2. Message Header Data Structure

As the RT-kernel needs more information to describe a message, a Message Header Data

Structure (MRT_msg_hdr_t) with the following fields is defined:

− source: RT-PID of the process who sent the message.

− dest: RT-PID of the destination process.

− mtype: What kind of message is it.

− mid: A message ID set by the kernel.

− seqno: A message sequence number. It is the number of message sent by

the sender RT-process.

− tstamp: The value of the system counter RTM_sv.counter.ticks when the

message was inserted into the MQ.

− priority: The message priority that equals the sender's priority (see

Section 5.18).

5.5. The Message Queue Entry Descriptor

A Message Queue Entry Descriptor (MQE) can store one Message Descriptor (mrt_msgd_t)

and other fields that are needed to conform MQs and handling message timeouts. The fields of the

MRT_mqe_t data structures are (see Appendix D):

− msgd: A Message Descriptor.

− index: A Message Queue Entry ID.

− pvt: A pointer to a VT that handle the message timeouts.

− next: A forward pointer.

− prev: A backward pointer.

5.6. The Message Queue Descriptor

A Message Queue Descriptor (MRT_msgq_t) let the RT-kernel organize MQEs. Each MQ

descriptor have the following fields:

− index: The message queue ID used for quick searches.

− size: The message queue size.

− flags: The message queue policy flags:

− MRT_PRTYORDER: Priority Order Policy

− MRT_FIFOORDER: First In First Out Order Policy

− inQ: It counts the number of messages enqueued.

− maxinQ: It counts the highest number of message enqueued.

− owner: The message queue owner.

− delivered: The total number of messages delivered.

− enqueued: The total number of messages enqueued.

− pvt: A pointer for the VT related with the MQ. It is used to handle the

timeout of the mrt_rcv() Kernel Call.

− mQ: An array of queues to handle the messages in priority or FIFO

order.

5.7. The RT-System Message Pool

The memory space where messages are stored is called the System Message Pool. It is

allocated in kernel memory space before communications to eliminate the buffer allocation delay (see

Figure 5.2).

The list that keeps the free Message Queue Entries is RTM_sm.mfreeQ. It has the same data

structure type MRT_msgq_t than other MQs.

Figure 5.2: System Message Pool.

5.8. Message Queues Management

To manage the MQs the RT-kernel uses the MRT_mQ_t data structure that is composed by:

A set of MQE queues, one queue assigned for each priority level.

A bitmap with one bit assigned for each priority. A bit set means that the related queue has at

least one message. Initially, all the bits are cleared indicating that all queues are empty.

When a MQE is enqueued, the related bit to its priority is set in bitmap, and the MQE is

appended to the queue in accordance with its priority field.

Finding the highest priority MQE in the MQ is therefore only a matter of finding the first bit

set in bitmap. Because the number of priorities is fixed, the time to complete a search is constant and

unaffected by the number of enqueued MQE in the queues.

Each queue have two pointers, one for the first message descriptor and one for the last

message descriptor enqueued (see Figure 5.3). The insertions in the queue can be in FIFO or LIFO

order. MQE of the same priority will be managed under a FIFO policy.

The following kernel functions help to manage MQs and MQEs:

− MRT_msgQ_rst(): Resets all MQ fields.

− MRT_msgQ_alloc(): Allocs a MQ for a RT-process.

− MRT_mqe_rst(): Resets all MQE fields.

− MRT_mqe_alloc(): Allocs a MQE from the Free queue for a MQ.

− MRT_mqe_free(): Releases a MQE returning it to the system Free

queue.

− MRT_mqe_app(): Appends a MQE at the tail of a MQ.

− MRT_mqe_rmv(): Removes a MQE from a MQ.

− MRT_mqe_pick(): Selects the highest priority (Priority Ordering) or the

oldest (FIFO Ordering) MQE sent by a specified source from a MQ.

As it can be seen, that the same design pattern was employed in the management of interrupt

descriptor queues, ready process queues, expired timer queues and message queues.

 Figure 5.3: Message Queue Management.

5.9. The mrt_rqst() Kernel Call

The mrt_rqst() Kernel Call sends a request message to a RT-process through a MQ in a

synchronous manner specifying a timeout.

The Kernel Call prototype is:

int mrt_rqst(dest, m_ptr, timeout)

Where:

− dest: It is the RT-PID of the destination process.

− m_ptr: It is a pointer to the message buffer.

− timeout: It is the time to wait that the request message could be sent.

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer

pointed by m_ptr to the dest’s process message buffer. The dest process inherits the caller's priority if

it is higher than its owns.

If dest process is not waiting for the message, the request is enqueued in the MQ owned by the

dest process, and the caller is blocked until the message is received. The dest process and all other

processes requested directly and indirectly by the dest process inherit the caller's priority if it is higher

than they own.

A timeout in Timer ticks can be specified to wait for the request message could be sent. A

special value of MRT_NOWAIT can be specified to return without waiting if the dest process is not

blocked receiving the message. To wait until the dest process will receive the message,

MRT_FOREVER must be specified as a timeout. If the timeout expired:

− The message is removed from the dest’s MQ.

− The caller process is unblocked returning and E_MRT_TIMEOUT error

code.

− The dest’s process priority is set to the highest priority message in it’s

MQ.

5.10. The mrt_arqst() Kernel Call

The mrt_arqst() Kernel Call sends a request message to a process through a MQ in an

asynchronous manner.

The Kernel Call prototype is:

int mrt_arqst(dest, m_ptr)

Where:

− dest: is the RT-PID of the destination process.

− m_ptr: is a pointer to the message buffer.

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer

pointed by m_ptr to the dest’s process message buffer. The dest process inherits the caller's priority if

it is higher than its owns.

If dest process is not waiting for the message, the request is enqueued in the dest’s MQ, and

the caller returns without waiting for the message will be received. The dest process and all other

processes requested directly and indirectly by the dest process inherit the caller's priority if it is higher

than they own.

5.11. The mrt_reply() Kernel Call

The mrt_reply() Kernel Call sends a message to a process through a MQ in an asynchronous

manner. It can be used for replies in a botton-up way (i.e. Server to Client).

The Kernel Call prototype is:

int MRT_reply(dest, m_ptr)

Where:

− dest: is the RT-PID of the destination process.

− m_ptr: is a pointer to the message buffer.

If the dest process is blocked waiting for the reply, the message is copied from the caller’s

memory m_ptr to the dest process message buffer and dest is unblocked.

If the dest process is not blocked waiting for the message, the reply is enqueued in the dest

process MQ.

At last, the caller’s priority is set to the highest priority message in it’s MQ or to its base

priority baseprty if its MQ is empty.

5.12. The mrt_uprqst() Kernel Call

The mrt_uprqst() Kernel Call sends a message to a process through a MQ in an asynchronous

manner. It can be used by the Tasks to make requests coming from remote processes in a botton-up

way.

The Kernel Call prototype is:

int mrt_uprqst(dest, m_ptr, priority)

Where:

− dest: is the RT-PID of the destination process.

− m_ptr: is a pointer to the message buffer.

− priority: is the priority of the message.

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer

m_ptr to dest’s process message buffer.

If the dest process is not waiting the message, it is enqueued into the dest process MQ.

In both cases, the priority of the dest process will be changed if and only if its current priority

is lower than the specified priority function argument.

5.13. The mrt_sign() Kernel Call

The mrt_sign() Kernel Call sends a message to a process through a MQ in an asynchronous

manner. It can be used by the Tasks to sign processes in a botton-up way.

The Kernel Call prototype is:

int mrt_sign(dest, m_ptr)

Where:

− dest: is the RT-PID of the destination process

− m_ptr: is a pointer to the message buffer

If the dest process is blocked waiting for the message, it is copied from the caller’s memory

m_ptr to the dest’s process message buffer.

If the dest process is not waiting the message, the message is enqueued into the dest’s process

MQ.

5.14. The MRT_send() Kernel Function

The MRT_send() Kernel Function sends a message to a process through a MQ in

asynchronous manner. It can be used by ISRs to send messages to Tasks in a botton-up way.

The Kernel Call prototype is:

int MRT_send(dest, prty, mtype)

Where:

− dest: The RT-PID of the destination process.

− prty: The message priority.

− mtype: The message type.

If the dest process is blocked waiting for the message, the message header is copied into the

dest’s process message buffer.

If the dest process is not blocked waiting the message, the message header is copied into the

dest’s process MQ, the field st.mdl (Missed DeadLines) of the dest process’s descriptor is increased

and a MT_SIGNAL message is sent to the watchdog process of the dest process.

5.15. The mrt_rcv() kernel Call

The mrt_rcv() Kernel Call is used to receive a message.

The Kernel Call prototype is:

int mrt_rcv(source, hdr_ptr, m_ptr, timeout)

Where:

− source: specify the RT-PID of the message sender from which the caller

wants to receive a message. A special value of MRT_ANYPROC can be

specified to receive a message from any source.

− hdr_ptr: specify the caller’s buffer for the message header.

− m_ptr: specify the caller’s buffer for the message payload.

− timeout: specify a timeout to wait for the message. Two special values

can be specified:

� MRT_NOWAIT: The process returns with o without receiving the

message. If the message has been received, the function return code is

OK else returns E_TRY_AGAIN.

� MRT_FOREVER: The process waits until the message is receive.

The caller searches for a message from the specified source into it’s MQ with the retrieving

policy of the MQ (Priority or FIFO order).

If there are no message from the source process, the caller is blocked.

If the source process is blocked trying to send the message in a synchronous manner it is

unblocked.

The caller process can specify a timeout to unblock itself. If no message from the specified

source is received in the specified period it returns E_MRT_TIMEOUT error code.

If a message is received, the hdr_ptr buffer is filled with the header fields of the message

received.

5.16. The mrt_rqrcv() kernel Call

The mrt_rqrcv() Kernel Call optimize the performance of the common operations of send a

request message to a server process and waits for the reply message. It saves one context switch for

the caller process.

The Kernel Call prototype is:

int mrt_rqrcv(dest, rqst, rply, hdr, timeout)

Where:

− dest: Specifies the RT-PID of the destination processs.

− rqst: Specifies the caller’s buffer for the request message.

− rply: Specifies the caller’s buffer for the reply message payload.

− hdr: Specifies the caller’s buffer for the message header.

− timeout: specify a timeout to wait for the message. A special value of

MRT_FOREVER can be specified to wait until the reply message is

received.

5.17. Using MINIX4RT IPC Kernel Calls

Table 5.1 resumes the uses of send-type RT-Kernel Calls. Table 5.2 resumes the uses of the

mrt_rcv() RT-Kernel Call.

Table 5.1: Send-type Kernel Calls Uses.

Use Kernel Call Caller’s Process

Priority

Destination’s Process

Priority

Caller waits until

Synchronous Request mrt_rqst() It is not changed It is set to the caller's

priority if it is higher

than it’s current

priority

The message is received or a

timeout expire.

Asynchronous Request

(used by non blocking

Servers)

mrt_arqst() It is not changed It is set to the caller's

priority if it is higher

than it’s current

priority

It does not wait

Table 5.1: Send-type Kernel Calls Uses (cont.)

Use Kernel Call Caller’s Process

Priority

Destination’s Process

Priority

Caller waits until

Reply mrt_reply() It is set to the value

of the highest

priority message in

its MQ or to its base

priority

It is not changed It does not wait

Up request message mrt_uprqst() It is not changed It is set to speficied

priority if it is higher

than its current priority

It does not wait

Signal message mrt_sign() It is not changed It is not changed It does not wait

Request & Receive mrt_rqrcv() It is not changed It is set to the caller's

priority if it is higher

than it’s current

priority

The reply message is received

or a timeout expire.

Send a message

(used by ISR)

MRT_send() It is not changed It is set to speficied

priority if it is higher

than its current priority

It does not wait if the

destination process is waiting

the message or enqueue the

message and increase de

missed deadline of the

destination process

Table 5.2: mrt_rcv() Kernel Calls Uses.

mrt_rcv use source timeout

To receive a reply. RT-PID of the requested process MRT_NOWAIT < timeout < MRT_FOREVER

To receive requests. MRT_ANYSRC MRT_FOREVER

5.18. Priority Invertion

In many RT-applications, there are resources that must be shared among processes in a way

that prevents more than one process from using the resource at any moment (mutual exclusion).

Priority inversion is the term used to describe a situation where a process is waiting for a lower

priority process to free a shared, exclusive use resource. Clearly, a priority based RT-system cannot

tolerate significant periods of priority inversion. A sample helps to illustrate the problem. See Figure

5.4, where:

TH: Highest Priority Process.

TM: Medium Priority Process.

TL: Lowest Priority Process.

S: Server Process.

Figure 5.4: Priority Inversion.

The sequence of events are:

t1: TL requests a service to S.

t2: S is preempted by TH.

t3: TH requests a service to S.

t4: S stills working on TL request.

t5: TM preempts S.

t6: TM exits and S stills working on TL request.

t7: S replies to TL and starts working on TH request.

The time interval between t3 and t6 is a Priority Inversion, but the interval between t4 and t5

may be unbounded.

The unbounded priority inversion is one serious problem in RT-systems. There has been

developed many mechanisms to avoid it. The priority inversion problem in Client/Server

communication is more serious one, since the length of priority inversion tends to be much longer

than that of synchronization.

5.19. Basic Priority Inheritance Protocol (BPIP)

Sha, Rajkumar and Lehosky [38] have proposed two protocols to avoid the priority inversion

problem. One is the Basic Priority Inheritance Protocol (BPIP), the other is the Priority Ceiling

Protocol (PCP).

Priority inheritance mechanisms are intended to prevent unbounded priority inversion by

adjusting the effective priority of a lower priority process TL whenever a higher priority process TH is

suspended waiting to be served.

A Server process S is said to be executing on behalf of a Client process P if S is executing a

P’s request or another process request that is executing a P’s request.

A process S is said to be blocking process P if P (or a Server executing on behalf of P) has

made a request to S, but S is executing other process request.

The BPIP consists of the following rules [37]:

− A Server process S executes at its runtime assigned priority when it

does not block any process or when it is not executing on behalf of a Client.

− If a Server process S is executing on behalf of a Client process P or is

blocking one or more process, S executes at either the priority of P or the

priority of the highest priority process (if any) that S blocks, whichever is

higher.

− Process requesting services of other process are served in priority order.

Under the BPIP, a Client process can be blocked in two ways:

− Directly: when the called process either has a queued request or is

executing other process request.

− Indirectly or push-through: when a process inherits a higher priority.

The BPIP potentially requires priorities to be modified when processes make requests. A

Server process may inherit the priority of a higher priority Client process even though the Server is

not executing that Client request. Thus, each Server has an assigned base priority (the baseprty field)

and an effective priority (the priority field).

The behavior of BPIP in a Client/Server application is illustrated in Figure 5.5.

Figure 5.5: Basic Priority Inheritance Protocol Sample.

Asumptions:

- HIGH, MEDIUM, LOW, BASE are process priorities.

- HIGH > MEDIUM > LOW > BASE.

- S’s priority = BASE.

- TL‘s priority = LOW.

- TM´s priority = MEDIUM.

- TH‘s priority = HIGH.

- TL priority = LOW.

The sequence of events is described below:

− TL sends a request message to S.

− S executes on behalf of TL with TL‘s priority.

− While S is processing TL’s request, TM preempts S and sends a new

request message to it. As S has not finished with TL’s request, it is still

running but at TM’s priority because it is blocking TM.

− While S is processing TL’s request, TH preempts S and sends a new

request message to it. As S has not finished with TL’s request, it is still

running but at TH’s priority because it is blocking TH.

− Afterward S finishs with TL’s request and sends a reply message to

TL’s. Then, it gets the highest priority message from it MQ (TH’s request),

and starts to process it.

− When S finishs with TH’s request, it sends a reply message to TH and

it’s priority is changed to the highest priority message from it MQ (TM’s

request) waiting to be received.

− When S finishs with TM’s request, it sends a reply message to TM and

it’s priority is changed to the highest priority message waiting to be received

but as the MQ is empty, it’s efective priority is reset it’s base priority.

In the previous sample, the higher priority process TH must wait that S finishs with the lower

priority process (TL) request. It is a bounded priority inversion limited to the time consumed by S

when it was executing on behalf of TL.

To achieve the correct behavior and be compliance with BPIP, priority inheritance needs to be

a transitive operation. Therefore, the RT-kernel must search across the chain of requested processes to

apply the priority inheritance until it finds the process that has no pending requests. To search across

the chain of a requested process, the RT-kernel uses mrt_sendto and mrt_getfrom fields of process

descriptors.

5.20. The Priority Ceiling Protocol (PCP)

One drawback of the BPIP is that it not prevents deadlocks and chained blocking. Dutertre

[39] shows this behaviour on a BPIP implementation based on semaphores. MINIX4RT is a systen

based on message transfer and its IPC primitives are based on the proposal of Borger and Rajkumar

[37].

The kinds of deadlocks exposed by Dutertre can not occur in MINIX4RT top-down

Client/Server programming model because all request goes down and replies goes up. It has the same

behavior that imposing a total ordering on resource use. System programmers must consider this

programming model to avoid deadlocks.

A necessary conditions for deadlocks is the use of blocking primitives, but MINIX4RT offers

blocking and non-blocking Kernel calls with and without timeouts.

Chained blocking occurs when the system uses semaphores and a higher priority process TH is

blocked by several processes of lower priorities in succession. For example, a process TM locks a

semaphore S1 and a process TL locks a semaphore S2. When TH tries to lock S1 it fails and TM inherits

TH ´s priority. When TM tries to lock S2 it fails and TL inherits TM ´s priority. TH must wait until TL

release S2 and TM releases S1 although TH does not use S2 directly.

Chained blocking could occurs in a system with message transfers as MINIX4RT. For

example, a process TM sends a request message to Server S1 and a process TL sends a request message

to Server S2. If TH sends a request message to Server S1, it must wait and S1 inherits TH´s priority. If

S1 sends a request message to Server S2 to process TM´s request, it must wait and S2 inherit TH´s

priority (transitive). TH is blocked waiting for:

− The reply of S2 to TL.

− The reply of S2 to and S1.

− The reply of S1 to TM .

− The reply of S1 to TH .

If PCP would be developed for MINIX4RT, it will need to set a priority ceiling for each

process. As Server and Task processes could be requested by any User-level processes, the priority

ceiling of all Servers and Tasks must be set to the highest User-level process priority. If a process

request a service and the Server is blocked waiting a synchronous I/O, any other User-level process

that requests another non related service to other Server will be blocked, because the Priority Ceiling

is equal to the highest priority, disabling that any other request be treated until the former will finish.

Therefore, the systems has the same behaviour than a monolitic non reentrant kernel.

If Server’s Priority Ceiling is greater than or equal to any other User-level processes’s priority,

the use of PCP slows down the system performance because only one process could be attended by

the RTOS at once.

5.21. Complete Priority Inheritance

Both, the BPIP and the PCP use the priority inheritance as a method to avoid the unbounded

priority inversion problem. Those protocols require process priorities to be modified, but changing the

priority of a process if one of the operations needed to implement priority inheritance. A RT-process

has resources as VTs and messages sent to other processes that are handled according to their

priorities, therefore they must change their priorities too.

To achieve a correct behavior of IPC primitives a Complete Priority Inheritance needs the

following actions on processes and resources:

− If the process is in the RT-ready state, it must be removed from its

current RT-ready Queue and inserted it into other RT-ready Queue

according to its inherit priority.

− All process's expired VTs must be removed from their current Expired

VT Queues and inserted into other Expired VT Queues according to the

inherit priority of their owner.

− All messages sent to other processes must be removed from their current

MQE lists and inserted into other MQE list according to the inherit priority

of the sender.

If a request message sent by a lower priority process TL does not change its priority when TL

inherits a higher priority, TL request may be (unbounded) delayed by other medium priority requests

sent to the same destination process. Therefore a Client with higher priority that request a service

from TL will be delayed too.

As it can be seen, the Complete Priority Inheritance could implies a performance penalty to

IPC and increases the inversion delays produced by the OS itself [27]. The current version of

MINIX4RT only changes the priority of the first process in the inheritance chain.

6. RT-SYSTEM CALLS, KERNEL CALLS AND FUNCTIONS

6.1. MINIX System Calls Implementation

MINIX offers mini_send() and mini_rec() basic kernel primitives as was explained in Chapter

5. At higher levels send(), receive() and sendrec() are used. All System Calls are implemented using

sendrec() to send the request to a server process and to wait the reply from it. The standard servers are

Memory Manager (MM) and File Sytem manager (FS). These interactions are deeply explained by

Ashton [3].

An example illustrates the implementation of a MINIX System Call (see Figure6.1).

Figure 6.1: MINIX System Calls Implementation.

When a User-level process wants to get its user time consumed it calls utime(), the call is

converted by the system library (libc.a) into a sendrec() Call to the FS server. As the FS server does

not have the information requested, it must transfer the request to a Task named SYSTASK using a

Task Call (with _taskcall() function). A Task Call is like a System Call used by servers to request

services to Tasks. Task Calls use send()/receive() primitives too.

As Tasks share the kernel memory space and data structures, the SYSTASK is like a kernel

representative that can get process accounting times from kernel tables to reply to the FS server that

can reply to the User-level process.

6.2. MINIX4RT System Calls Implementation

MINIX4RT offers a set of System Calls that operates in a similar way as MINIX System Calls

does. Unlike MINIX, it does not use the SYSTASK for source code readability.

For those time constrained services MINIX4RT offers Kernel Calls that are not inplemented

using message transfers. They call RT-kernel services through a processor Trap.

The following sections describe how MINIX4RT implements System Calls and Kernel Calls

and Appendix D is the reference of data structures used by them.

6.2.1. RT-System Calls with Message Transfers

Some RT-services do not need be requested by RT-processes. Examples of these

services are the start of the Real-Time Processing Mode, stops it, gets system statistics, etc.

They are not used for time constrained functions and they use MINIX send()/receive()

primitives. Therefore, the RT-kernel could preempt the requesting process during the Sytem

Call if a RT-process is ready to run. These type of RT-related System Calls are

implemented using the MM server that interacts with a new task called MRTTASK (see

Figure 6.2)

MRTTASK is like a RT-kernel representative that can access to RT-kernel data

structures to reply to the MM server that can reply to the User-level process.

Figure 6.2: RT-System Calls with Message Transfers.

6.2.2. RT-Kernel Calls without Message Transfers

 For time constrained services the MINIX4RT offers RT-kernel Calls. They interact

with the RT-kernel directly without message transfers as in a monolitic OS using a processor

Trap. (see Figure 6.3).

Figure 6.3: RT-Kernel Calls without Message Transfers.

This approach does not generate a sequence of context switches but implies a change

from User-mode to Kernel-mode and viceversa.

6.2.3. The RT-PID

Every process in the system has an assigned unique identifier named the process

identifier (PID). PIDs are the common mechanism used by applications to reference

processes. Inside the MINIX kernel the p_nr field of the process descriptor is used for its

IPC primitives instead of the PID.

As is was described in Chapter 5, the IPC Kernel Calls use the RT-PID to identify

senders and receivers RT-processes. The RT-PID is a data structure of type mrtpid_t with

the following fields:

− pid: The process ID assigned by MINIX when the process was created.

− p_nr: The process number assigned by the MINIX kernel when the

process was created. It is related with the slot number of the kernel process

table.

The IPC RT-Kernel Calls could be implemented using only the process PID to

identify the RT-process. This strategy implies that the RT-kernel must scan all the process

table until it finds the process that matches the specified PID. Once it find the process, the

RT-kernel could get its p_nr field of the process descriptor needed for carry out the Kernel

Call. This approach impose an unacceptable performance penalty for a RTOS.

 The IPC Kernel Calls could be implemented using only the process p_nr to identify

a RT-process, but if the RT-process terminates and other process gets the same slot number

in the kernel process table, all related processes that reference to the ended process (p_nr)

will refer to the new process with the same p_nr. Therefore, both related field are needed to

identify univocally a RT-process and to avoid an unacceptable delay.

6.3. Adding New RT-System Calls using MRTTASK

As MINIX4RT was designed for an academic environment, it is useful to know how to

enhance its functionalities to make laboratory and coding practice. The following sections guide

instructors into the steps of adding new System Calls.

To add a new RT-System Call it is appropriate to follow some system naming conventions.

For a new System Call that will be named mrt_newcall:

− mrt_newcall(): RT-system call to be used by User-level programs.

− rtt_newcall(): The name of the function used by de MM Server to

invoke MRTTASK.

− MRT_newcall() : The name of the function executed by MRTTASK that

makes the work.

− MRT_NEWCALL: RT-System Call number.

To link each RT-System Call number with its service routine, the MM server uses a System

Call dispatch table (defined in /src/mm/table.c), which is stored in the call_vec[] array and has

NCALLS entries. The nth entry contains the service routine address of the System Call number n.

To associate each function number with its corresponding service routine, the MRTTASK uses

a dispatch table which is stored in the MRT_vector[] array. The nth entry contains the service routine

address of the System Call having number (MRT_FIRSTCALL + n).

The Table 6.1 shows some steps to add a new RT-System Call (i.e. newcall) using MRTTASK.

Table 6.1: Steps to Add a New RT-System Call.

Directory Action File Description

create mrtnewcall.s It is an Assembler source code file. Create a label named

_mrt_newcall to jump to a C function named

__mrt_newcall. /usr/src/lib/syscall/

modify Makefile Add the mrtnewcall.s compilation

create _mrtnewcall.c Create a function named _mrt_newcall() that sends a

message to the MM server using _syscall(MM,

MRTCALL, &m)

The message m must have the MRTTASK operation code

(MRT_NEWCALL) in the field m.m1_i1, m.m2_i1 or

m.m3_i1. The other message fields can be used for the

MRTTASK function parameters.

/usr/src/lib/posix/

modify Makefile Add the mrtnewcall.c compilation.

create rtt_newcall.c Create a function named rtt_newcall() that sends a

message to the MRTTASK using _taskcall(MRTTASK,

MRT_NEWCALL, &m). The message m have the

MRTTASK function parameters.
/usr/src/lib/syslib/

modify Makefile Add the rtt_newcall.c compilation.

modify syslib.h Change MRT_NCALLS and define MRT_NEWCALL

Declare the function rtt_newcall() that the MM server

invokes to request a service from MRTTASK.
/usr /include/minix/

 com.h Add some #define of message fields used in mrttask.c

modify unistd.h Add the function mrt_newcall() prototype and define

data structures if needed.
/usr /include/

modify errno.h Add new error types i.e. E_MRT_NEWERROR

Table 6.1: Steps to Add a New RT-System Call (cont).

Directory Action File Description

modify getset.c Change the function do_getset() To add the case

MRT_NEWCALL and the invocation to MRTTASK
/usr/src/mm

modify param.h Add message fields aliases

modify mrttask.c Add the new functions of MRTTASK. The array of

function pointer MRT_vector[] must be changed to point

to the new function MRT_newcall().
/usr /src/kernel/

make clean;

make install

 Library compilation.

/usr/src/tools # make hdboot Kernel compilation.

6.4. Adding RT-Kernel Calls without Message Transfers

Only RT-processes can make RT-System Calls direct to the RT-kernel (RT-kernel Calls) with

the exception of mrt_set2rt().

The Table 6.2 shows some steps to add a new RT-Kernel Call (i.e. newkrn).

Table 6.2: Steps to Add a New RT-Kernel Call.

Directory Action File Description

create mrtnewkrn.s It is an Assembler source code file. Create a label named

_mrt_newkrn to jump to a C function named

__mrt_newkrn /usr/src/lib/syscall/

modify Makefile Add the mrtnewkrn.s compilation

create _mrtnewkrn.c Create a function named _mrt_newkrn() to make a direct

RT-Kernel Call using rtkrncall(MRTNEWKRN,

parm_ptr);

MRTNEWKRN is the number of the RT-Kernel Call

The parm_ptr is a pointer to the RT-Kernel Call

parameters.

/usr/src/lib/posix/

modify Makefile Add the mrtnewkrn.c compilation.

/usr /include/minix/
 com.h Update the NRTKCALLS constant and define

MRTNEWKRN constant.

modify unistd.h Add the function mrt_newkrn() prototype and define

data structures if needed.
/usr /include/

modify errno.h Add new error types E_MRT_NEWERROR.

Table 6.2: Steps to Add a New RT-Kernel Call (cont).

Directory Action File Description

modify mrtproc.c Add the new function MRT_newkrn().

modify mrtipc.c Add the new function MRT_newkrn(). /usr /src/kernel/

modify proto.h Add the new function MRT_newkrn() declaration.

/usr /src/lib
make clean;

make install

 Library compilation.

/usr/src/tools # make hdboot Kernel compilation.

As it was explained in the previous section, it is appropriate to follow some system naming

conventions to add a new RT-Kernel Call that will be named mrt_newkrn:

− mrt_newkrn(): The RT-Kernel Call to be used by user space programs

− MRT_newkrn(): The name of the function executed by RT-kernel that

do the work.

− MRTNEWKRN: RT-kernel call number

6.5. RT-Kernel Functions

RT-kernel functions can only be used from programs linked with the RT-kernel code. They

can be used in RT-Device Drivers, RT-ISRs and RT-tasks. Table 6.3 shows a summary of RT-kernel

functions.

Table 6.3: RT-Kernel Functions.

Synchronization Primitives

void MRT_lock(void) Disables maskable interrupts.

void MRT_unlock(void) Enables maskable interrupts.

void MRT_saveFunlock(long *flags) Saves CPU Flags Register into a local static variable flags and

enable interrupts.

void MRT_saveFlock(long *flags) Saves CPU Flags Register into a local static variable flags and

disables interrupts.

void MRT_restoreF(long *flags) Restores CPU Flags Register from a local static variable flags.

Table 6.3: RT-Kernel Functions (cont.).

Synchronization Primitives

void MRT_enable_irq(unsigned irq) Enables an IRQ line at the PIC 8259 controller.

void MRT_disable_irq(unsigned irq) Disables an IRQ line at the PIC 8259 controller.

unsigned MRT_get_PIC(void) Gets the PIC 8259 mask.

void MRT_disable_irq(unsigned mask) Sets the PIC 8259 to a specified mask.

Interrupt Management

void MRT_irqd_trigger(MRT_irqd_t *irqd) Sets the interrupt descriptor for running in the next returning from

an IRQ or System Call.

MRT_irqd_t *MRT_irqd_serviced(MRT_irqd_t *irqd) Unsets the interrupt descriptor for running in the next returning

from an IRQ or System Call. It must not be used after running the

interrupt handler because the RT-kernel do that.

void MRT_irqQ_ins(MRT_irqd_t *irqd) Inserts an interrupt descriptor into an interrupt queue.

void MRT_irqQ_rmv(MRT_irqd_t *irqd) Removes an interrupt descriptor from an interrupt queue.

int MRT_softirq_alloc(void) Allocates a software interrupt descriptor. Returns the descriptor

number (the index of the MRT_si.irqtab[] array).

void MRT_softirq_free(int irq_nbr) Frees a software interrupt descriptor.

void MRT_irqd_set(int irq, MRT_irqd_t *irqd) Sets the parameters of an interrupt descriptor (hardware and

software interrupts).

void MRT_irqd_free(MRT_irqd_t *irqd) Removes a interrupt descriptor from the interrupt queue and resets

the descriptor fields.

void MRT_irqd_rst(MRT_irqd_t *irqd) Reset all fields of an interrupt descriptor.

Process Management

void MRT_rdyQ_ins(MRT_proc_t *rp) Inserts a process descriptor at the head of a RT-ready Queue.

void MRT_rdyQ_app(MRT_proc_t *rp) Appends a Process Descriptor at the tail of a RT-Ready Queue.

There is a macro defined in proc.h named MRT_ready() that is

assigned to MRT_rdyQ_app().

void MRT_rdyQ_rmv (MRT_proc_t *rp) Removes a process descriptor from a RT-ready Queue. There is a

macro defined in proc.h named MRT_unready() that is assigned to

MRT_rdyQ_rmv().

void lock_pick_proc(void) It is the scheduler. Its searches the RT-ready Queues for the highest

priority RT-process. If the queues are empty, it runs the MINIX

scheduler algorithm. The global variable proc_ptr is set to selected

process descriptor. It resets the MRT_NEEDSCHED in the global

system variable MRT_sv.flags.

void MRT_proc_rst (int p_nr) Resets all RT parameters and statistics of a process specified in the

p_nr argument.

Table 6.3: RT-Kernel Functions (cont.).

Process Management

int MRT_set2rt(MRT_proc_t *rp) Converts a NRT-process into a RT-process. Before call this

function, fill all process descriptors fields.

int MRT_set2nrt(MRT_proc_t *rp) Converts a RT-process into a NRT-process.

int MRT_sleep(struct proc *rp,long int timeout) Sets the MRT_P_SLEEP state flag of a process and calls

MRT_unready(). A timeout could be specified to wakeup the

process at its expiration.

int MRT_wakeup(struct proc *rp) Clears the MRT_P_SLEEP state flag of a process and calls

MRT_ready().

Time Management

void MRT_set_timer(unsigned int Harmonic) Initializes channel 0 of the 8253A timer to generate Harmonic * HZ

interrupts by second.

unsigned int MRT_read_timer2(void) Reads the channel 2 counter of the PIT. Used for latency

calculation.

void MRT_vtimer_free(MRT_vtimer_t *vt) Resets all fields of a VT descriptor.

MRT_vtimer_t *MRT_vtimer_alloc (MRT_vtimer_t *vt) Allocates a VT with the parameters passed by the function

argument.

void MRT_vtimer_ins(MRT_vtimer_t *vt,MRT_vtQ_t *ptq) Inserts a VT into a VT queue.

void MRT_vtimer_rmv(MRT_vtimer_t *vt,MRT_vtQ_t

*ptq)

Removes a VT from a VT queue.

Message Transfer

int MRT_send(int dest,int prty,int mtype) Sends an mtype message to a process identified by its process

number dest. The message priority will be prty.

7. REAL-TIME PROCESSING RELATED STATISTICS

Tools for monitoring the behavior of an operating system are invaluable in performance

tuning and debugging. MINIX4RT, as a RTOS for academic uses, provides several interfaces to

system and process statistics which might be used for performance analysis.

This chapter describe multiple ways of gather statistics, Appendix A is a reference that

includes statistics related System Call and Kernel Call, and Appendix B gives short examples of using

statistics related programming interfaces. In all cases, however, the man pages are the definitive

references.

7.1. System-wide Statistics

The mrt_getstat() System Call let gather system-wide statistics. The address of a data structure

named mrt_sysstat_s must be passed as a parameter. On return, the RT-kernel fills the following fields

with statistics since the last call to mrt_RTstart() or mrt_RTrestart() System Calls:

− scheds: It counts the number of RT-schedulings.

− messages: It counts the number of messages sent (received an not).

− interrupts: It counts the number of Hardware interrupts.

− ticks: It counts the number of Timer interrupts.

− highticks: It counts the number of ticks overruns.

− idlemax: It is the highest value counted by kernel idlecount variable.

(explained in Section 7.4).

− idlelast: It is the last value counted by kernel idlecount variable.

(explained in Section 7.4).

7.2. Interrupts Service Routines Statistics

The mrt_getistat() System Call let gather interrupt statistics. The interrupt number and the

address of a data structure named mrt_istat_s must be passed as parameters. On return, the RT-kernel

fills the following fields with statistics since the last call to mrt_RTstart() or mrt_RTrestart() for the

specified interrupt descriptor number:

− count: It counts the the number of interrupts.

− maxshower: It is the highest number of TD-interrupts in a period.

− mdl: It counts the the number of Missed Deadlines.

− timestamp: It is the timestamp of the last interrupt.

− maxlat: It is the highest interrupt latency in PIT Hz units.

− reenter: It is the highest kernel reentrancy level.

7.3. Process Statistics

The mrt_getpstat() System Call let gather process statistics. The process RT-PID and the

address of a data structure named mrt_pstat_s must be passed as parameters. On return, the RT-kernel

fills the following fields with statistics for the specified process since it was converted into a RT-

process:

− scheds: The number times that the RT-process was scheduled.

− mdl: The number of Missed Deadlines.

− timestamp: The last schedule timestamp in PIT ticks.

− maxlat: The maximun latency to dispatch the process (not implemented

yet).

− minlax: The minimun laxity for the process (not implemented yet).

− msgsent: The number of RT-messages sent by the process.

− msgrcvd: The number of RT-messages received by the process.

Those fields match with the rtstats_t data structure of the proc data structure.

7.4. The IDLE Process

MINIX4RT CPU load estimation is based on the IDLE process. The IDLE process is executed

when there are not any process ready to run. As more time is used by IDLE in a specified period,

lower is the CPU used by the system and the other processes. IDLE is a funcion called idle_task() that

jumps to MRT_idle().

IDLE process uses five global variables to do its works. They are initialized by

MRT_idle_init() Kernel Function and by the mrt_RTstart() System Call. The variables used by IDLE

are:

− MRT_sv.idlecount: When the IDLE process is running, increments the

value of this variable in an infinite loop. (function MRT_idle())

− MRT_sv.counter.idlelast: The last value of MRT_sv.idlecount before the

RT-kernel resets it.

− MRT_sv.counter.idlemax: The highest value of MRT_sv.idlelast since

the last execution of mrt_RTstart() or mrt_RTrestart() System Calls.

− MRT_sv.idlerefresh: A counter that is decreased on each PIT tick to

control the reset action of the MRT_sv.idlecount variable. Once it is reaches

zero, the RT-kernel copies MRT_sv.idlecount to MRT_sv.counter.idlelast,

compares its value against MRT_sv.counter.idlemax and replaces it with the

highest. Then, the RT-kernel resets MRT_sv.idlecount and copies

MRT_sv.refresh to MRT_sv.idlerefresh.

− MRT_sv.refresh: The period to refresh IDLE counters in PIT ticks. It is

specified as an argument of the mrt_RTstart() System Call.

7.5. The Fx Keys

MINIX4RT as MINIX, use de Fx Keys to show statistics, attributes and status information

about the system behavior. Several variables of interrupts, processes, MQs, and VTs are accessible to

the user to provide data for benchmarking and testing new developments. When the user press an Fx

key, the information is shown in the system console.

The F1, F2, F3 and F5 keys are used by MINIX. F1 shows MINIX processes attributes, F2

shows MINIX processes memory map, F3 Toggle scrolling mode and F5 shows Ethernet statistics.

7.5.1. The Shift-F1 Hot-Key

The Shift-F1 Hot-Key displays the RT-attributes of all running processes. In the last

line of Figure 7.1 the process named mrttest8c that has the PID 27 is a RT-process

(FLAGS=4002) waiting to receive a message from process 6 (RCVF=6). Its efective priority

is 4 (PRTY=4) and its base priority is 4 too (BASE=4).

Figure 7.1: RT-Process Attributes.

The columns displayed have the following meanings:

− PROC: The process number.

− PID: The Process Identifier.

− FLAGS: The process' RT-status flags.

− PRTY: The process' effective priority.

− BASE: The process' base priority.

− PERIOD: The process' period specified in PIT ticks (only for

MRT_P_PERIODIC).

− LIMIT: The limit for the number of RT-schedulings.

− DEAD: The process deadline specified in PIT ticks.

− WDOG: The process' watchdog process.

− RCVF: The process from which the process wants to receive a RT-

message.

− SNDT: The process to which the process wants to send a RT-message.

− NAME: The name of the process.

7.5.2. The Ctrl-F1 Key

The Ctrl-F1 Hot-Key displays the RT-statistics of all running processes. In the last

line of Figure 7.2 a process named mrttest8c was scheduled 10 times (SCHEDS=10), the

last was at time 32753 ticks (TSTAMP=32753) since the last mrt_RTstart()/mrt_restart()

system call invocation. The columns displayed have the following meanings:

− PROC: The process number. The first process is (-NR_TASKS).

− PID: The Process Identifier.

− SCHED: Counts how many times the process has been selected by the

RT-scheduler.

− MDL: The number of Missed Deadlines.

− TSTAMP: The last schedule timestamp in PIT ticks.

− MAXLAT: The maximun latency to dispatch the process (not

implemented yet).

− MINLAX: The minimun laxity for the process (not implemented yet).

− SENT: The number of RT-messages sent by the process.

− RCVD: The number of RT-messages received by the process.

− VT: The VT assigned to a Periodic process.

− MQ: The MQ assigned to a RT-processes.

Figure7.2: RT-Processes Statistics.

7.5.3. The Shift-F2 Hot-Key

PIT Latency between 2 reads: is the time in PIT Hz, between two sequencial reads of

the PIT LATCH counter. It is useful to estimate the time consumed by a read operation of

the PIT LATCH used as was explained in Chapter 4.

The other system status, counters and statistics are simple to understand that not

need further explanation (see Figure7.3).

Figure 7.3: RT-System Wide Attributes and Statistics.

7.5.4. The F4 Key

The F4 Key displays the RT-attributes, status and statistics of all RT-Hardware

interrupt descriptors as is shown in Figure 7.4. The columns displayed have the following

meanings:

− IRQ: The interrupt descriptor number.

− TSK: The RT-Task number related with the interrupt.

− WDG: The watchdog process number.

− COUNT: It counts the number of interrupts.

− MLAT: Maximun Latency of the interrupt handler.

− LAT: The last latency of the interrupt handler.

− RE: The interrupt descriptor reenter field.

− PY: The interrupt priority.

− TY: The interrupt type.

− VT: The VT assigned to the interrupt descriptor (only for TD-interrupts).

− TSTAMP: The timestamp of the last handler execution.

 Figure 7.4: Hardware Interrupt Descriptors.

− MS: The maximun value of shower field of the interrupt descriptor.

− MDL: The number of missed deadlines.

− PER: The period of the interrupt (only for TD-interrupts).

− FLAG: The status flags of the interrupt descriptor.

− NAME: The name of the interrupt descriptor.

Figure 7.4 shows that IRQ 4 is a Timer Driven RT-interrupt descriptor (TY=1)

named RT-RS232 with a priority of 7 (PY=7) and a period of 1 (PER=1) tick. The handler

was executed 26 times, the last at 49006 ticks since the last mrt_RTstart()/mrt_restart()

system call invocation.

7.5.5. The Shift-F4 Hot-Key

The Shift-F4 Hot-Key displays the RT-attributes, status and statistics of all Software

interrupt descriptors. The attributes, status and statistics displayed are the same as for the F4

key. Figure 7.5 shows the sofware IRQ 16 dedicated to manage the MINIX clock (timer)

virtualization. The handler was executed 31215 times since the last

mrt_RTstart()/mrt_restart() system call invocation.

 Figure 7.5: Software Interrupt Descriptors.

7.5.6. The Ctrl-F4 Hot-Key

The Ctrl-F4 Hot-Key displays the interrupt descriptors queues and the bitmap of

Interrupt Queues as is shown in Figure 7.6. The columns displayed have the following

meanings:

− PRI: The priority of the interrupt descriptor.

− INQ: The current number of descriptors enqueued.

− PEND: The number of pending interrupt descriptors.

− Enqueued Interrupt Descriptors: The list of Interrupt descriptors for

each queue.

Figure 7.6: Interrupt Descriptors Queues.

7.5.7. The Shift-F5 Hot-Key

The Shift-F5 Hot-Key displays the RT-ready processes queues and MINIX ready

processes queues and the RT-ready queue bitmap.

Figure 7.7: RT-Ready Queues and MINIX Ready Queues.

Figure 7.7 shows process number 7 as the only process in the RT-ready queue of

priority 4. This queue has got 2 process enqueued.

The columns displayed have the following meanings:

− PRI: The priority of RT-ready processes queue.

− MAXINQ: The maximun number of descriptors enqueued.

− INQ: The current number of descriptors enqueued.

− PROC-LIST: The current list of RT-ready processes in each queue.

− MINIX-PROC-LIST: The current list of MINIX ready processes in each

queue.

7.5.8. The F6 Key

The F6 Key displays the RT-message pool with the messages attributtes. The

columns displayed have the following meanings:

Figure 7.8: RT-message Pool (Message Attributtes).

− MSG: The message queue entry number in the array

MRT_sm.mpool.mqe[].

− SRCE: The message source process.

− DEST: The message destination process.

− TYPE: The message type described in include/minix/const.h.

− MID: The system wide message ID.

− SEQNO: The source process message sequence number.

− TIMESTAMP: The message sent timestamp.

− TOUT: The message timeout.

− PRI: The message sender priority.

− DLINE: The message sender deadline.

− LAXTY: The message sender laxity.

Figure 7.8 shows message number 0 with a timestamp of 3233 from source 7 and destination 6

with a message ID of 2, a sequence number of 9 and a priority of 4.

7.5.9. The Shift-F6 Hot-Key

The Shift-F6 Hot-Key displays RT-message pool with messages contents. The first

line of Figure 7.9 shows message number 1 from source 7 and destination 6 with a contents

of "HELLO FATHER".

The columns displayed have the following meanings:

− MSG: The message queue entry number in the MRT_sm.mpool.mqe[]

array.

− SRCE: The message source process.

− DEST: The message destination process.

− TYPE: The message type described in include/minix/const.h.

− MID: The system wide message ID.

− VT: The VT assigned to the message.

− 01234567890123456789: The message content.

Figure 7.9: RT-Message Pool (Message Contents).

7.5.10. The Ctrl-F6 Hot-Key

The Ctrl-F6 Hot-Key displays MQ Status an Statistics. The columns displayed have

the following meanings:

− ID: The MQ number in the MRT_sm.msgQ[]array.

− SZ: The MQ size (in MQEs).

− FLAG: The MQ status and policy flags.

− BITM: The MQ priority bitmap.

− INQ: The number of message enqueued.

− MAX: The maximun number of message enqueued.

− OWN: The MQ owner.

− VT: The assigned VT for the MQ.

− DLVD: The total number of messages delivered.

− ENQD: The total number of messages enqueued.

Figure 7.10: Message Queue Status and Statistics.

Figure 7.10 shows that Message Queue with ID 0 have a size of 4 messages with one message

enqueued. Its owner is process number 6 and it has enqueued 4 messages and delivered 3 messages.

7.5.11. The F8 Key

The F8 Key displays VT attributes, status and statistics.Figure 7.11 shows VT

number 0 that is the emulated MINIX CLOCK interrupt with a period of 4 and action type 4

(MRT_ACT_IRQTRIG) with an action parameter 16 is owned by process -3 (the CLOCK

Task) with priority 15. It has expired 37461 times and the last expiration was at tick 149844.

The columns displayed have the following meanings:

− VT: VT number.

− PERIOD: VT period in PIT ticks.

− NEXTEXP: Next VT expiration.

− LIMIT: A limit for VT expirations.

− ACT: The action of the VT.

− PAR: The VT parameter field.

− NR: Same as the VT number.

− OWN: The owner process of the VT.

− PRTY: The VT priority.

− EXPIRE: The number of VT expirations.

− TIMESTAMP: The last VT expiration timestamp.

Figure 7.11: Virtual Timer Attributes, Status and Statistics.

7.5.12. The Shift-F8 Hot-Key

The Ctrl-F8 Hot-Key displays RT-Virtual timer queues status. Figure 7.12 shows the

Active Queue that have VT number 0 enqueued and 15 Expired Queues, one queue for each

system priority. The last line shows the Free VT Queue that have 15 free VTs.

The columns displayed have the following meanings:

− TYPE: The VT queue type

− PRTY: The Priority of the VT queue

− INQ: The number of VTs enqueued

− MAXINQ: The maximun number of VTs enqueued.

− LIST: The lists of VTs.

− ACTV: It is the Active VT queue.

− EXPD: It is an Expired VT queue.

− FREE: It is the Free VT queue.

Figure 7.12: RT-Virtual Timer Queues.

7.6. The Modified ps Command

The ps command reports information about active processes. It was modified to support new

options to show processes statistics and attributes related to RT-processing. The columns have the

same meanings of fields explained in previous sections.

7.6.1. The –A Option

This option shows process attributes related to RT-processing (see Figure 7.13).

Figure 7.13: ps Command with –A Option.

7.6.2. The –S Option

This option shows process statistics related to RT-processing. Figure 7.14 shows process

number 6 named mrttest8c with PID 36 has been scheduled 12 times, the last schedule at time 22314

ticks since the last mrt_RTstart()/mrt_restart() System Call invocation.

Figure 7.14: ps Command with –S Option.

7.7. The mrtstatus Command

The mrtstatus command provides additional information related to RT-processing. As the ps

command, it uses the character special files /dev/mem and /dev/kmem MINIX devices that map system

and kernel memory to files. Both devices, the /dev/null, and RAM disks are supported by the

MEMORY Task.

The MEMORY Task offers several IOCTL operations on memory devices. The

MIOCGPSINFO is used by the MM and the FS to gather information about the addresses of their

process tables needed by the ps command.

MINIX4RT adds a new IOCTL operation to the MEMORY Task named MIOCGMRTINFO to

gather information about the addresses of main RT-kernel tables and data structures needed by the

mrtstatus command. The mrtstatus command reports:

− RT-kernel constants.

− System-wide statistics.

− Interrupt descriptor statistics.

− Virtual Timer statistics.

− Messages statistics.

− Interrupt Queue statistics.

− Virtual Timer statistics.

− Message Queues statistics.

 The several columns of the reports have the same meanings of fields explained in previous

sections, other will be described in the following subsections.

7.7.1. The –s Option

This option (default) shows System-wide statistics related to RT-processing (see

Figure 7.15).

Figure 7.15: mrtstatus Command with –s Option.

7.7.2. The –i Option

This option shows interrupt descriptors status and statistics (see Figure 7.16).

Figure 7.16: mrtstatus Command with –i Option.

7.7.3. The –t Option

This option shows VTs status and statistics (see Figure 7.17). The columns displayed

have the following meanings:

− VT: VT number.

− PERIOD: VT period in PIT ticks.

− NEXTEXP: Next VT expiration.

− LIMIT: A limit for VT expirations.

− ACT: The action of the VT.

− PAR: The VT parameter field.

− NR: Same as the VT number.

− OWN: The owner process of the VT.

− PRTY: The VT priority.

− EXPIRE: The number of VT expirations.

− TIMESTAMP: The last VT expiration timestamp.

Figure 7.17: mrtstatus Command with –t Option.

7.7.4. The –m Option

This option shows messages status and statistics (see Figure 7.18). The columns

displayed have the following meanings:

− MSG: Message number.

− SPID/SNBR: Source PID and Source Number (RT-PID).

− DPID/DNBR: Destination PID and Destination Number (RT-PID).

− TYPE: Message Type.

− MID: Message ID.

− SEQNO: Sequence Number.

− TIMESTAMP: Message timestamp.

− PRI: Message Priority.

− DLINE: Message Sender Deadline.

− LAXTY: Message Sender Laxity.

Figure 7.18: mrtstatus Command with –m Option.

7.7.5. The –c Option

This option shows the values of RT-kernel constant (see Figure 7.19).

The constants showed have the following meanings:

− NR_VTIMERS: Number of system Virtual Timers.

− NR_PRTY: Number of priority levels.

− NR_IRQ_VECTORS: Number of IRQ vectors (and Hardware interrupt

descriptors).

− NR_IRQ_SOFT: Number of Software interrupt descriptors.

− NR_MSGQ: Number of Message Queues (It limits the number of RT-

processes)

− NR_MESSAGES: Number of system messages.

Figure 7.19: mrtstatus Command with –c Option.

7.7.6. The –I Option

This option shows interrupt queues status and statistics (see Figure 7.20).

The columns displayed have the following meanings:

− PRI: The priority of the interrupt descriptor.

− INQ: The current number of descriptors enqueued.

− PEND: The number of pending interrupt descriptors.

Each bit set in the bitmap displayed represents an interrupt queue with at least one

descriptor triggered (service pending).

Figure 7.20: mrtstatus Command with –I Option.

7.7.7. The –T Option

This option shows VTs queues status and statistics (see Figure 7.21).

The columns displayed have the following meanings:

- TYPE: The VT queue type

- PRTY: The Priority of the VT queue

- INQ: The number of VTs enqueued

- MAXINQ: The maximun number of VTs enqueued.

- ACTV: It is the Active VT queue.

- EXPD: It is an Expired VT queue.

- FREE: It is the Free VT queue.

Figure 7.21: mrtstatus Command with –T Option.

7.7.8. The –M Option

This option shows MQ status and statistics (see Figure 7.22).

Figure 7.22: mrtstatus Command with –M Option.

The columns displayed have the following meanings:

− ID: The MQ number in the MRT_sm.msgQ[]array.

− SZ: The MQ size (in MQEs).

− FLAG: The MQ status and policy flags.

− INQ: The number of message enqueued.

− MAX: The maximun number of message enqueued.

− OWN: The MQ owner.

− DLVD: The total number of messages delivered.

− ENQD: The total number of messages enqueued.

8. CONCLUSIONS AND FUTURE WORKS

8.1. Conclusions

MINIX has proved to be a feasible testbed for OS development and extensions that could be

easily added to it. In a similar way, MINIX4RT has an architecture that can be used as a starting point

for adding RT-services.

In spite of it was designed for an academic environment, it can be optimized for production

systems even in embedded systems. Its Virtual Machine architecture, code readability, MINIX

compatibility and the similarities of several of its algorithms and data structures helps to minimize the

understanding time of its source code. Those characteristics make it suitable for course assignments

and RT-project developments as the support of Rate Monotonic/Deadline Monotonic scheduling

algorithms, Sporadic/Deferable Servers implementation and performance evaluation tests.

MINIX4RT microkernel has basic features as Interrupt Management, Process Management,

Time Management, Real-Time IPC and Statistics gathering making it a good choice to conduct coding

experiences. Device-drivers writers have at their disposal several flavors of interrupt handling as

Event-Driven, Timer-Driven, Software and Non-Real-Time Interrupt Service Routines execution.

8.2. Future Works

MINIX4RT development does not finish with this thesis. There are other planed projects for

its improvement as:

− RT-FIFOs: They are mechanisms equivalent to RTLinux RT-FIFOs that

permit RT-processes communicate with NRT-processes.

− RT-Semaphores: They are known mechanisms in OSs used for

synchronization and mutual exclusion among RT-processes.

− Non Periodic Time Management: Often, OSs increase the Timer

frequency when they need better time resolution. This approach increase the

timer interrupt overhead because it is executed more frequently.

Sometimes, a more efficient strategy for better timer resolution is to use the

ONE_SHOT mode for programming the PIT instead the SQUARE_WAVE

mode. In this mode, on each Timer interrupt the PIT is programmed to

generate an interrupt at the time of the the next VT expiration time.

− Update MINIX4RT as a branch of MINIX3: MINIX Version 3 offers a

lot of improvements over previous versions and MINIX4RT will benefit of

it’s new features.

− POSIX 1003.1b compatibility: To support standard functions that RT-

applications need, such as enhanced IPC, scheduling and memory

management control, asynchronous I/O operations and file synchronization.

References

[1] Compaq Computer Corporation, "Tru64 UNIX:Guide to Realtime Programming", August 2000,

http://www.helsinki.fi/atk/unix/dec_manuals/DOC_51A/HTML/ARH9TBTE/TITLE.HTM.

[2] Tanenbaum Andrew S., Woodhull Albert S., "Sistemas Operativos: Diseño e Implementación 2da Edición",

ISBN 9701701658, Editorial Prentice-Hall , 1999.

[3] Paul Ashton, Carl Cerecke,Craig McGeachie, Stuart Yeates, “Use of interaction networks in teaching Minix”

Technical Remailbox . COSC 08/95, Dept. of Computer Science . University of Canterbury,1995.

[4] Paul Ashton, Daniel Ayers, Peter Smith. "SunOS MINIX: A tool for use in Operating System laboratories”,

Technical Remailbox, Australian Computer Science Communications, 16(1): 259-269, 1994.

[5] Stephen J Hartley, “More Experience with MINIX in Operating System lab”, available online at

ftp://ftp.mcs.drexel.edu/pub/shartley/minix.PO.gz.

[6] Victor Yodaiken, “Cheap Operating System Research and Teaching with Linux”, available online at

http://citeseer.ist.psu.edu/75556.html.

[7] RTnet-Hard Real-Time Networking for Linux/RTAI, available online at http://www.rts.uni-

hannover.de/rtnet/index.html.

[8] Rether: A Real-Time Ethernet Protocol, http://www.ecsl.cs.sunysb.edu/rether/.

[9] Victor Yodaiken, Michael Barabanov, “A Real-Time Linux”, ”, Proceedings of Linux Applications

Development and Deployment Conference (USELINUX), January, 1997, available online at

http://rtlinux.cs.nmt.edu/.

[10] Takuro Kitayama, Tatsuo Nakajima, and Hideyuki Tokuda, “RT-IPC: An IPC Extension for Real-Time

Mach”, School of Computer Science, Carnegie Mellon University, Japan Advanced Institute of Science and

Technology.

[11] QNX Software Systems Ltd. 2002 – “QNX Neutrino Realtime Operating System – System Architecture”,

http://www.mikecramer.com/Qnx/momentics_nc_docs/neutrino/sys_arch/kernel.html.

[12] Pablo J. Rogina - Gabriel Wainer., “New Real-Time Extensions to the MINIX operating system”, Proc. of 5

th Int. Conference on Information Systems Analysis and Synthesis (ISAS'99),August, 1999.

[13] Gabriel A. Wainer, “Implementing Real-Time services in MINIX”, ACM Operating Systems Review, July

1995.

[14] Mark Russinovich ,”Inside NT's Interrupt Handling”, Windows & .NET Magazine, November 1997,

available on line at http://www.winntmag.com/Articles/Print.cfm?ArticleID=298.

[15] Daniel P. Bovet, Marco Cesati, "Understanding the Linux Kernel Second Edition, 2003" - O'Reilly – 2003.

[16] Keith Loepere, “Mach 3 Kernel Principles”, Open Software Foundation and Carnegie Mellon University,

July 15, 1992.

[17] Jochen Liedtke, “On µ-Kernel Construction”, In Proceedings of the Fifteenth ACM Symposium on

Operating System Principles (Copper Mountain Resort, CO., Dec. 3-6). ACM Press, New York, NY, 1995, pp.

237-250.

[18] Intel Corporation, Intel Architecture Software Developer's Manual Volume 3: System Programming Guide,

1997.

[19] Kevin Jeffay, Donald L. Stone , “Accounting for Interrupt Handling Costs in Dynamic Priority Task

Systems”, University of North Carolina at Chapel Hill, Department of Computer Science.

[20] INtime Interrupt Latency Report, ”Measured Interrupt Response Times”, November, 1998, Technical Paper

available on line at http://www.profimatics.de/products/intime/manuals/intime.interrupt.latency.report.pdf.

[21] Daniel I. Katcher, Hiroshi Arakawa, Jay K. Strosnider, “Engineering and Analisys of Fixed Priority

Schedulers”, Software Engineering, 1993, volume 19, number 9, pages 920-934.

[22] Matthew B. Ragen, ”Real-Time Systems With Microsoft Windows NT“, Microsoft Corporation -April 1995,

http://www.theragens.com/misc/MR%20-%20Windows%20NT%20Real-Time.htm.

[23] Herman Bruyninckx , “Real-Time and Embedded Guide”, K.U.Leuven, Mechanical Engineering, Leuven,

Belgium.

[24] Real-Time Systems: (Shin) http://cslab.snu.ac.kr/course/rts03/notes/rt_c2mod.ppt.

[25] Gregory Bollella, Kevin Jeffay ,“Support For Real-Time Computing Within General Purpose Operating

Systems”, 1995.

[26] Victor Yodaiken, “The RTLinux Manifesto”, Department of Computer Science New Mexico Institute of

Technology.

[27] Victor Yodaiken, “Against Priority Inheritance”, Fsmlabs Technical Report, available on line at

http://www.fsmlabs.com/articles/inherit/inherit.pdf, June 25, 2002.

[28] “About UNIX and Real-Time Scheduling”, http://www.pcengines.ch/schedule.htm., 1989.

[29] C. L. Liu and J. Layland. “Scheduling algorithms for multiprogramming in a hard real-time environment”,

Journal of the ACM, 10(1), 1973.

[30] N. C. Audsley A. Burns M. F. Richardson A. J. Wellings “Hard Real-Time Scheduling: The Deadline-

Monotonic Approach”, Department of Computer Science, University of York, York, YO1 5DD, England.

[31] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, “Deadline Scheduling For Real-Time Systems:

EDF and Related Algorithms”. Norwell, MA: Kluwer, 1998.

[32] Aloysius Ka-Lau Mok. "Fundamental Design Problems of Distributed Systems for the Hard Real-Time

Environment." MIT LCS Technical Report 297, Department of Computer Science, MIT, May, 1983.

[33] TICS Realtime, “Different Timing Mechanisms and How They are Used” , available on line at

http://www.concentric.net/~Tics/tics1196a.htm.

[34] George Varghese, Tony Lauck, “Hashed and Hierarchical Timing Wheels: Efficient Data Structures for

Implementing a Timer Facility”, IEEE\slash ACM Transactions on Networking. (1996), available on line at

http://citeseer.nj.nec.com/cache/papers/cs/1218/http:zSzzSzwww.ccrc.wustl.eduzSz~varghesezSzPAPERSzSzt

wheel.pdf/varghese96hashed.pdf.

[35] Robert Hill, Balaji Srinivasan, Shyam Pather, Douglas Niehaus, "Temporal Resolution and Real-Time

Extensions to Linux.", ITTC Technical Report ITTC-FY98-11510-03, University of Kansas, 1998.

[36] Jochen Liedtke , “Improving IPC by Kernel Design”, 14th ACM Symposium on Operating System

Principles (SOSP) 5th-8th December, 1993, Asheville, North Carolina.

[37] Mark W. Borger, Ragunathan Rajkumar. “Implementing Priority Inheritance Algorithms in an Ada

Runtime System”, Technical Remailbox . CMU/SEI-89-TR-15. ESD-TR-89-23. April 1989. Software

Engineering Institute Carnegie Mellon University.

[38] Sha, L., Lehoczky, J.P., and Rajkumar, R. “Priority Inheritance Protocols: An Approach to Real-Time

Synchronization”. Tech. Rept. CMU-CS-87-181, Carnegie Mellon University, Computer Science Department,

1987.

[39] Bruno Dutertre, “The Priority Ceiling Protocol: Formalization and Analysis Using PVS”, System Design

Laboratory SRI International, Menlo Park, CA 94025, November 8, 1999.

Appendix A: RT-SYSTEM CALLS AND RT-KERNEL CALLS

REFERENCE

A.1. System Calls Reference

A.1.1. mrt_RTstart

NAME
 mrt_RTstart - Starts the Real-Time Processing Mode.

SYNOPSIS
 #include <unistd.h>

 int mrt_RTstart(int Harmonic,int Refresh)

ARGUMENTS

 Harmonic:The Harmonic Number of the MINIX timer frequency (HZ = 50 Hz).
 Refresh: The idle refresh counter in timer ticks.

DESCRIPTION
 mrt_RTstart starts the Real-Time Processing Mode and configure the Timer to
generate Harmonic * HZ interrupts by second. The idle process statistics
are renewed each Refresh ticks.

 This call is restricted to the super-user and must be executed by a Non
Realtime process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_RTstart will fail and processing mode will be unchanged if one or more
of the following are true:

 [E_MRT_BADHARM]A bad value has been specified for the Harmonic argument.

 [E_MRT_BADRFSH]A bad value has been specified for the Refresh argument.

 [E_MRT_RTACTIVE]The system is already in Real-Time Processing Mode.

SEE ALSO
 mrt_RTstop(2).

A.1.2. mrt_RTstop

NAME
 mrt_RTstop - Stops the Real-Time processing mode.

SYNOPSIS
 #include <unistd.h>

 int mrt_RTstop(void)

ARGUMENTS
 None No Arguments.

DESCRIPTION
 mrt_RTstop Stops the Real-Time Processing Mode.

 This call is restricted to the super-user and must be executed by a Non
Realtime process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_RTstop will fail and processing mode will be unchanged if the
following is true:

 [E_MRT_RTACTIVE] A Real-Time process is still running.
SEE ALSO
 mrt_RTstart(2).

NOTES
 Kill all RT-process before call mrt_RTstop.

A.1.3. mrt_clrpstat

NAME
 mrt_clrpstat - Clears all RT-processing statistics of a specified process.

SYNOPSIS
 #include <unistd.h>

 int mrt_clrpstat(pid_t Pid)

ARGUMENTS

 Pid: The PID number of the RT-process.

DESCRIPTION
 mrt_clrpstat Clears all RT-processing statistics of a specified process. This
call is restricted to the super-user. It must be executed by a NRT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_clrpstat will fail if one or more of the following are true:

 [E_BAD_PROC]The RT-process of the specified Pid does not exist.

SEE ALSO
 mrt_getpstat(2).

A.1.4. mrt_getiattr

NAME
 mrt_getiattr - Gets the RT-processing Attributes of an IRQ descriptor.

SYNOPSIS
 #include <unistd.h>

 int mrt_getiattr(int irq, mrt_irqattr_t *attr)

ARGUMENTS

 irq: The IRQ number

 attr: An IRQ Attributes descriptor with the RT-processing for the IRQ that
will be filled by the system call.

DESCRIPTION
 mrt_getiattr Gets the RT-processing Attributes of an IRQ descriptor. On
successful return of the system call, the following mrt_irqattr_t fields will be
filled by the system:
 period: The processing period for a TD- interrupt handler in RT-ticks units.
 task: The number of the RT-task to send a message for deferred
processing.
 watchdog: The ID number of a watchdog RT-process.
 priority: The priority of the handler
 irqtype: The type of handler.
 name: The reference name for the handler.
 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getiattr will fail if one or more of the following are true:

 [EINVAL]Invalid mrt_irqattr_t pointer.

 [E_MRT_BADIRQ] Invalid value specified for irq number in irq.

SEE ALSO
 mrt_setiattr(2).

A.1.5. mrt_getiint

NAME
 mrt_getiint - Gets the RT-processing Internal use fields values of an IRQ
descriptor.

SYNOPSIS
 #include <unistd.h>

 int mrt_getiint(int irq, mrt_irq_int_t *stat)

ARGUMENTS

 irq: The IRQ number.

 iint: An IRQ internal fields descriptor with the RT-processing internal
fields values of the specified IRQ descriptor will be filled by the system.

DESCRIPTION
 mrt_getiint Gets the RT-processing Internal use fields values of an IRQ
descriptor. On successful return of the system call, the following
 mrt_irq_int_t fields will be filled by the system:
 irq: The number of the irq.
 harmonic: The value of the RT_sv.harmonic system value when the systems
change to Real Time mode. (only for Real Time Timer Driven descriptors).
 vimer: The number of the Virtual Timer used for Real Time Timer Driven
descriptors.
 flags: Some status flags.
 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getiint will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_irq_int_t pointer.

 [E_MRT_BADIRQ] Invalid value specified for irq number in irq.

SEE ALSO
 mrt_getiarg(2).

A.1.6. mrt_getistat

NAME
 mrt_getistat - Gets the RT-processing Statistics of an IRQ descriptor.

SYNOPSIS
 #include <unistd.h>

 int mrt_getistat(int irq, mrt_irqstat_t *stat)

ARGUMENTS

 irq: The IRQ number.

 stat: An IRQ statistics descriptor with the RT-processing statistics of the
specified IRQ descriptor will be filled by the system.

DESCRIPTION

 mrt_getistat Gets the RT-processing Statistics of an IRQ descriptor. On
successful return of the system call, the following mrt_irqstat_t fields will be
filled by the system:

 count: An interrupt counter.
 maxrain: The maximun number of interrupts into a period of Timer
Driven handler.
 maxrain: The number of Missed DeadLines of the handler.
 timestamp: The last interrupt timestamp.
 maxlat: The maximun (approximate) latency of the handler.

 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getistat will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_irqstat_t pointer.

 [E_MRT_BADIRQ] Invalid specified irq number.

SEE ALSO
 mrt_getiattr(2).

A.1.7. mrt_getpattr

NAME
 mrt_getpattr - Gets the RT-processing attributtes of the calling NRT-
process

SYNOPSIS
 #include <unistd.h>

 int mrt_getpattr(pid_t Pid, mrt_pattr_t *P_attrib)

ARGUMENTS

 Pid: The PID number of the RT-process.

 P_attrib: A pointer to a mrt_pattr_t data structure to store the process's RT-
rocessing attributes.

DESCRIPTION
 mrt_getpattr Gets the RT-Processing Attributes of the specified process. This
call is restricted to the super-user. It must be executed by a NRT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getpattr will fail if one or more of the following are true:

 [EINVAL]Invalid mrt_pattr_t pointer.

SEE ALSO
 mrt_setpattr(2).

A.1.8. mrt_getpint

NAME
 mrt_getpint - Gets the RT-processing internal variables of a specified
process.

SYNOPSIS
 #include <unistd.h>

 int mrt_getpint(pid_t Pid, mrt_pint_t *p_int)

ARGUMENTS

 Pid: The PID number of the RT-process.

 p_int: A pointer to a mrt_pint_t data structure to store RT-process
internal variables.

DESCRIPTION
 mrt_getpint Gets the RT-processing internal variables of a specified
process. This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getpint will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_pint_t pointer.

 [E_BAD_PROC] The RT-process of the specified Pid does not exist.

SEE ALSO
 mrt_getpstat(2).

A.1.9. mrt_getpstat

NAME
 mrt_getpstat - Gets the RT-processing statistics of a specified process.

SYNOPSIS
 #include <unistd.h>

 int mrt_getpstat(pid_t Pid, mrt_pstat_t *p_stats)

ARGUMENTS

 Pid: The PID number of the RT-process.

 p_stats: A pointer to a mrt_pstat_t data structure to store RT-process
statistics.

DESCRIPTION
 mrt_getpstat Gets the RT-processing statistics of a specified RT-process. This
call is restricted to the super-user. It must be executed by a NRT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getpstat will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_pstat_t pointer.

 [E_BAD_PROC] The RT-process of the specified Pid does not exist.

SEE ALSO
 mrt_getpint(2). mrt_clrpstat(2).

A.1.10. mrt_getsstat

NAME
 mrt_getsstat - Gets the System Wide RT-processing statistics.

SYNOPSIS
 #include <unistd.h>

 int mrt_getsstat(mrt_sysstat_t *stat)

ARGUMENTS

 stat A pointer to a mrt_sysstat_t data structure to store the system RT-
processing statistics.

DESCRIPTION
 mrt_getsstat Gets the System Wide RT-processing statistics.

 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getsstat will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_sysstat_t pointer.

SEE ALSO
 mrt_getsval(2).

A.1.11. mrt_getsval

NAME
 mrt_getsval - Gets the System Wide RT-processing values.

SYNOPSIS
 #include <unistd.h>

 int mrt_getsval(mrt_sysval_t *val)

ARGUMENTS

 val A pointer to a mrt_sysval_t data structure to store the system RT-
processing statistics.

DESCRIPTION
 mrt_getsval Gets the System Wide RT-processing values.

 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_getsval will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_sysval_t pointer.

SEE ALSO
 mrt_getsstat(2).

A.1.12. mrt_restart

NAME
 mrt_restart - Restart the Real-Time Processing Mode.

SYNOPSIS
 #include <unistd.h>

 int mrt_restart(int Harmonic,int Refresh)

ARGUMENTS

 Armonic: The Harmonic Number of the MINIX timer frequency (HZ=50 Hz).

 Refresh: The idle refresh counter in timer ticks.

DESCRIPTION
 mrt_restart Restarts the Real-Time Processing Mode and configure the
Timer to generate Harmonic * HZ interrupts by second.The idle process
statistics are renewed each Refresh ticks.

 This call is restricted to the super-user and must be executed by a Non
Realtime process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_restart will fail and processing mode will be unchanged if one or more
of the following are true:

 [E_MRT_BADHARM] A bad value has been specified for the Harmonic argument.

 [E_MRT_BADRFSH] A bad value has been specified for the Refresh argument.

 [E_MRT_RTACTIVE] At least a RT-process is running in the system.

SEE ALSO
 mrt_RTstart(2). mrt_RTstop(2).

A.1.13. mrt_setiattr

NAME
 mrt_setiattr - Sets the RT-processing Attributes of an IRQ descriptor.

SYNOPSIS
 #include <unistd.h>

 int mrt_setiattr(int irq, mrt_irqattr_t *attr)

ARGUMENTS

 irq: The IRQ number.

 attr An IRQ Attributes descriptor with the RT-processing Attributes for the
IRQ.

DESCRIPTION
 mrt_setiattr Sets the RT-processing Attributes of an IRQ descriptor. The
mrt_irqattr_t data structure has the following fields that must be filled:
 period: The processing period for a TD- interrupt handler in RT-ticks
units.
 task: The ID number of the RT-task to send a message for deferred
processing.
 watchdog: The ID number of a watchdog RT-process.
 priority: The priority of the handler.
 irqtype: The type of handler. It must an OR of the following bits:
 MRT_RTIRQ: for Real-Time handlers (Otherwise it will be NRT-
handler).
 MRT_TDIRQ: for Timer-Driven handlers (Otherwise it will be Event
Driven-IRQ handler).
 MRT_SOFTIRQ: for Software IRQ handlers (Otherwise it will be a
Hardware IRQ handler).
 name: A reference name for the handler.

 This call is restricted to the super-user. It must be executed by a NRT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_setiattr will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_irqattr_t pointer

 [E_MRT_BADIRQ] Invalid value specified for irq number.

 [E_MRT_BADTASK] Invalid value specified for the TASK number in attr->task

 [E_MRT_BADWDOG] Invalid value specified for the watchdog PID in attr->watchdog

 [E_MRT_BADPRTY] Invalid value specified for the IRQ descriptor priority in
attr->priority

 [E_MRT_BADIRQT] Invalid value specified for the IRQ type in attr->irqtype

SEE ALSO
 mrt_getiattr(2).

A.1.14. mrt_setpattr

NAME
 mrt_setpattr - Sets the RT-processing attributtes of the calling NRT-
process.

SYNOPSIS
 #include <unistd.h>

 int mrt_setpattr(mrt_pattr_t *p_attrib)

ARGUMENTS

 p_attrib: A pointer to a mrt_pattr_t data structure with the RT-processing
attributes of the calling NRT-process. The field of the data structure are:
 flags: Real Time Flags.
 baseprty: Real Time Base priority.
 period: period in RT-ticks for Periodic Processes.
 limit: maximun number of process schedulings.
 deadline: process deadline.
 watchdog: Watchdog process.
 mq_size: Message Queue Size.
 mq_flags: Message Queue Policy Flags.

 The Real Time Flags flags can be an OR of the following flags:
 MRT_P_REALTIME: to set the process as Real-Time.
 MRT_P_PERIODIC: to set the process as Real-Time Periodic.

 The Message Queue Policy Flags mq_flags can be an OR of the following
flags:
 MRT_PRTYORDER: Priority Order Policy (otherwise FIFO policy).
 MRT_PRTYINHERIT: Priority Inheritance policy.

DESCRIPTION
 mrt_setpattr Sets the RT-Processing Attributes of the calling NRT-process.
This call is restricted to the super-user. It must be executed by a NRT-process in
System Real Time Processing Mode.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_setpattr will fail if one or more of the following are true:

 [EINVAL] Invalid mrt_pattr_t pointer.

 [E_MRT_BADPTYPE] Invalid value specified for process type in p_attrib->ptype.

 [E_MRT_BADPRTY]Invalid value specified for process priority in
p_attrib->priority.

 [E_MRT_BADWDOG] Non existing or NRT-watchdog process specified in p_attrib
->watchdog.

 [E_MRT_NOMSGQ] The system cannot assign a Message Queue of the specified size
in p_attrib->mq_size.

 [E_MRT_NOVTIMER] The system cannot assign a Virtual Timer for a Periodic
RT-process.

SEE ALSO
 mrt_getpattr(2).

A.2. Kernel Calls Reference

A.2.1. mrt_rqst

NAME
 mrt_rqst - sends a synchronous request message.

SYNOPSIS
 #include <unistd.h>
 int mrt_rqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr, lcounter_t timeout);

ARGUMENTS

 mrtpid: The RT-PID of the destination RT-process.

 m_ptr: A pointer to the message buffer.

 timeout: The number of RT-ticks for waiting to send de request. A MRT_NOWAIT
value can be specified to return without waiting if the destination process is not
waiting for this message. A MRT_FOREVER value can be specified to wait until the
destination process receive the message.

DESCRIPTION
 mrt_rqst sends a request message to a process through a message queue in a
synchronous way with or without specifying a timeout. It must be executed by a RT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_rqst will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPROC] The process PID does not much with the process number use by
the kernel.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

 [E_BAD_DEST] The Destination process is does not exist.

 [E_TRY_AGAIN] The Destination process message queue is full.

 [E_MRT_NOMQENT] The system message queue entry free pool is empty.

SEE ALSO
 mrt_arqst(2). mrt_uprqst(2).

A.2.2. mrt_arqst

NAME
 mrt_arqst - sends an Asynchronous request message.

SYNOPSIS
 #include <unistd.h>

 int mrt_arqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr);

ARGUMENTS

 mrtpid: The RT-PID of the destination RT-process.

 m_ptr: A pointer to the message buffer.

DESCRIPTION
 mrt_arqst sends a request message to a process through a message queue in an
Asynchronous way. It must be executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_arqst will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The Source process is not a RT-process.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

 [E_BAD_DEST] The Destination process is does not exist.

 [E_TRY_AGAIN] The Destination process message queue is full.

 [E_MRT_NOMQENT] The system message queue entry free pool is empty.

SEE ALSO
 mrt_rqst(2). mrt_uprqst(2).

A.2.3. mrt_uprqst

NAME
 mrt_uprqst - sends an Asynchronous request message in a botton-up way.

SYNOPSIS
 #include <unistd.h>

 int mrt_uprqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr, int priority);

ARGUMENTS

 mrtpid: The RT-PID of the destination RT-process.

 m_ptr: A pointer to the message buffer.

 priority: message priority.

DESCRIPTION
 mrt_uprqst sends a request message to a process through a message queue in
an Asynchronous way in a botton-up manner. The destination process increase its
priority if the priority argument is higher that the one it owns. It must be
executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_uprqst will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The Source process is not a RT-process.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

 [E_BAD_DEST] The Destination process is does not exist.

 [E_TRY_AGAIN] The Destination process message queue is full.

 [E_MRT_NOMQENT] The system message queue entry free pool is empty.

SEE ALSO
 mrt_rqst(2). mrt_arqst(2).

A.2.4. mrt_sign

NAME
 mrt_sign - sends a message to a process through a MQ in an asynchronous way.

SYNOPSIS
 #include <unistd.h>

 int mrt_sign(mrtpid_t mrtpid, mrt_msg_t *m_ptr);

ARGUMENTS

 mrtpid: The RT-PID of the destination RT-process.

 m_ptr: A pointer to the message buffer.

 priority: Message priority.

DESCRIPTION
 mrt_sign sends a request message to a process through a message queue in an
Asynchronous way in a botton-up manner. It must be executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_sign will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The Source process is not a RT-process.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

 [E_BAD_DEST] The Destination process is does not exist.

 [E_TRY_AGAIN] The Destination process message queue is full.

 [E_MRT_NOMQENT] The system message queue entry free pool is empty.

SEE ALSO
 mrt_rqst(2). mrt_arqst(2).

A.2.5. mrt_reply

NAME
 mrt_reply - sends a message to a process through a MQ in an asynchronous way.

SYNOPSIS
 #include <unistd.h>

 int mrt_reply(mrtpid_t mrtpid, Imrt_msg_t *m_ptr);

ARGUMENTS

 mrtpid: The RT-PID of the destination RT-process.

 m_ptr: A pointer to the message buffer.

DESCRIPTION
 mrt_reply sends a message to a process through a MQ in an asynchronous way.
It must be executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_reply will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The Source process is not a RT-process.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

 [E_BAD_DEST] The Destination process is does not exist.

 [E_TRY_AGAIN] The Destination process message queue is full.

 [E_MRT_NOMQENT] The system message queue entry free pool is empty.

SEE ALSO
 mrt_arqst(2). mrt_uprqst(2).

A.2.6. mrt_rcv

NAME
 mrt_rcv - Gets a message from the RT-process MQ.

SYNOPSIS
 #include <unistd.h>

 int mrt_rcv(mrtpid_t mrtpid, mrt_hdr_t *hdr_ptr,
 mrt_msg_t *m_ptr, lcounter_t timeout);

ARGUMENTS

 mrtpid
 The RT-PID of the message sender from which the caller wants to
receive a message. A special value of MRT_ANYPROC can be specified to receive a
message from any source.

 dr_ptr: The caller´s buffer for the message header.

 m_ptr: The caller^Rs buffer for the message payload.

 timeout: The number of RT-ticks for waiting to receive a message. A
MRT_NOWAIT value can be specified to return with o without receiving the message.
If the message has been received, the function return code is OK else returns
E_TRY_AGAIN. A MRT_FOREVER value can be specified to waits until the message is
receive.

DESCRIPTION
 mrt_rcv gets a message from the RT-process MQ. It must be executed by a RT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_rcv will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The Source process is not a RT-process.

 [E_TRY_AGAIN] The process has specified a MRT_NOWAIT timeout and the MQ is
empty or there are not any message from the specified source.

 [MRT_NOVTIMER] The process has specified a timeout to wait for a message
but there are not any Virtual Timer to allocate.

SEE ALSO
 mrt_rqst(2). mrt_reply(2).

A.2.7. mrt_sleep

NAME
 mrt_sleep - Blocks a process for a specified time.

SYNOPSIS
 #include <unistd.h>

 int mrt_sleep(lcounter_t time);

ARGUMENTS

 time: The process is blocked for a specified time (in RT-ticks). A
MRT_FOREVER value can be specified for the time to wait until the process will
be unblocked by other process using the mrt_wakeup System Call.

DESCRIPTION
 mrt_sleep blocks a process for a specified time. It must be executed by a RT-
process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_sleep will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPER] The process has specified an invalid time argument.

 [MRT_NOVTIMER] The process has specified a time to wait but there are not
any Virtual Timer to allocate.

SEE ALSO
 mrt_wakeup(2).

A.2.8. mrt_wakeup

NAME
 mrt_wakeup - Wakes up a blocked (MRT_SLEEP flag set) process.

SYNOPSIS
 #include <unistd.h>

 int mrt_wakeup(mrtpid_t mrtpid);

ARGUMENTS

 mrtpid: The RT-PID of the RT-process to unblock.

DESCRIPTION
 mrt_wakeup wakes up a blocked (MRT_SLEEP flag set) process. It must be
executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_wakeup will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPROC] The process PID does not much with the process number use by
the kernel.

 [E_MRT_BADPTYPE] The Destination process is not a RT-process.

SEE ALSO
 mrt_sleep(2).

A.2.9. prt_print

NAME
 mrt_print - Prints a specified text on the system console.

SYNOPSIS
 #include <unistd.h>

 int mrt_print(const char* string);

ARGUMENTS

 string: The string to print.

DESCRIPTION
 mrt_print Prints a specified text on the system console. The maximum
string length accepted is MAXPRTSTR. It must be executed by a RT-process.

RETURN VALUE
 Upon successful completion, a value of 0 (OK) is returned. Otherwise, a
negative value is returned to indicate an error.

ERRORS
 mrt_print will fail if one or more of the following are true:

 [E_MRT_NORTMODE] The system is in Non Real Time processing Mode.

 [E_MRT_BADPTYPE] The caller process is not a RT-process.

Appendix B: SAMPLE PROGRAMS

This appendix show several sample programs that use MINIX4RT System Calls and Kernel

Calls.

B.1. mrtstart.c

This program starts the Real-Time processing mode. The harmonic frequency of MINIX

Timer can be specified as an argument and the number of Timer ticks to refresh IDLE process

statistics. By default harmonic=4 and refresh=200 are assumed.

Listing B.1: mrtstart.c

/***/
/* mrtstart.c */
/* Starts the Real Time mode using mrt_RTstart() System Call */
/* Usage: */
/* mrtstart [harmonic [refresh]] */
/* where: */
/* harmonic: The Harmonic Number of the MINIX timer frequency (HZ = 50 Hz). */
/* refresh: The idle refresh counter in timer ticks. */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>
#include <minix/const.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{

 int rcode, harmonic, refresh;

 harmonic = 4;
 refresh = 4 * HZ;

 switch (argc)
 {
 case 1:
 break;
 case 2:
 harmonic = atoi(argv[1]);
 break;
 case 3:
 harmonic = atoi(argv[1]);
 refresh = atoi(argv[2]);
 break;
 default:
 printf("usage: \n\tmrtstart [harmonic [refresh]]\n");
 exit(1);
 }

 rcode = mrt_RTstart(harmonic,refresh);
 if(rcode != 0)
 {
 printf("mrt_RTstart: rcode=%5d.\n", rcode);
 exit(rcode);
 }
 else
 {
 printf("System is in Realtime Mode.");
 printf(" Harmonic=%d (%d ticks\/s), IDLE refresh=%d ticks\n"
 ,harmonic,harmonic*HZ,refresh);
 }
 exit(0);
}

B.2. mrtstop.c

This program stops the Real-Time processing mode only if there are not any RT-process

running in the system.

Listing B.2: mrtstop.c

/***/
/* mrtstop.c */
/* Stops the Real Time processing mode using mrt_RTstop() System Call */
/* Usage: */
/* mrtstop */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 int rcode;

 rcode = mrt_RTstop();
 if(rcode != 0)
 {
 printf("mrt_RTstop: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("System is in Non Realtime Mode\n");

 exit(0);
}

B.3. mrttest1.c

This program gets and displays Interrrupt Descriptors of attribute fields. At the last line the

test must display irq=32 rcode=-2001.

Listing B.3: mrttest1.c

/***/
/* mrttest1.c */
/* Test the mrt_getiattr() System Call to get Interrupt Descriptor Attributes */
/* Usage: */
/* mrttest1 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{

 int irq, rcode;
 mrt_irqattr_t iattrs;

 printf("IRQ PERIOD TASK WATCHDOG PRIORITY IRQTYPE NAME\n");

 for(irq = 0; irq < 33; irq++)
 {
 rcode = mrt_getiattr(irq, &iattrs);
 if(rcode != 0)

 printf("irq=%2d rcode=%5d.The test is OK if irq=32 rcode=-2001
\n"
 ,irq ,rcode);
 else
 printf("%3d %6d %4d %8d %8d %7X %-16s\n",
 irq,
 iattrs.period,
 iattrs.task,
 iattrs.watchdog,
 iattrs.priority,
 iattrs.irqtype,
 iattrs.name);
 }
}

B.4. mrttest1b.c

This program gets and displays Interrrupt Descriptors of statistical fields. At the last line the

test must display irq=32 rcode=-2001.

Listing B.4: mrttest1b.c

/***/
/* mrttest1b.c */
/* Test the mrt_getistat() System Call to get Interrupt Descriptor Statistics */
/* Usage: */
/* mrttest1b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{

 int irq, rcode;
 mrt_irqstat_t istat;

 printf("IRQ COUNT MAXSHWR MDL TSTAMP MAXLAT REENTER\n");

 for(irq = 0; irq < 33; irq++)
 {
 rcode = mrt_getistat(irq, &istat);
 if(rcode != 0)
 printf("irq=%2d rcode=%5d. Its OK if irq=32 rcode=-2001 \n"
 ,irq ,rcode);
 else
 printf("%3d %5d %7d %3d %6d %6d %7d\n",
 irq,
 istat.count,

 istat.maxshower,
 istat.mdl,
 istat.timestamp,
 istat.maxlat,
 istat.reenter);
 }
}

B.5. mrttest1c.c

This program gets and displays Interrrupt Descriptors of internal use fields. At the last line the

test must display irq=32 rcode=-2001.

Listing B.5: mrttest1c.c

/***/
/* mrttest1c.c */
/* Test the mrt_getiint() System Call to get Interrupt Descrip. Internal Data */
/* Usage: */
/* mrttest1c */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{

 int irq, rcode;
 mrt_irqint_t iint;

 printf("IRQ NUMBER HARMONIC VTIMER FLAGS\n");

 for(irq = 0; irq < 33; irq++)
 {
 rcode = mrt_getiint(irq, &iint);
 if(rcode != 0)
 printf("irq=%2d rcode=%5d.It is OK if irq=32 rcode=-2001 \n"
 ,irq ,rcode);
 else
 printf("%3d %7d %7d %7d %5X\n",
 irq,
 iint.irq,
 iint.harmonic,
 iint.vtimer,
 iint.flags);
 }
}

B.6. mrttest2.c

This program sets Interrrupt Descriptors processing attribute fields.

Listing B.6: mrttest2.c

/***/
/* mrttest2.c */
/* Test the mrt_setiattr() System Call to set Interrupt Descriptor Attributes */
/* Usage: */
/* mrttest2 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>
#include <minix/com.h>
#include <minix/const.h>

#define RS232_IRQ 4
#define HARDWARE -1
#define RS232_TASK -11

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{

 int rcode;
 mrt_irqattr_t rs_attrs;

 rs_attrs.period = 0;
 rs_attrs.task = RS232_TASK;
 rs_attrs.watchdog = HARDWARE;
 rs_attrs.priority = MRT_PRI05;
 rs_attrs.irqtype = MRT_RTIRQ;
 strncpy(rs_attrs.name,"RT-RS232NEW",15);

 rcode = mrt_setiattr(RS232_IRQ , &rs_attrs);
 printf("mrt_setiattr: \nirq=%2d rcode=%5d.\n", RS232_IRQ,rcode);
 if(rcode != 0) exit(1);
}

B.7. mrttest3.c

This program gets and displays System-wide statistics.

Listing B.7: mrttest3.c

/***/
/* mrttest3.c */
/* Test the mrt_getsstat() System Call to get System Wide Statistics */
/* Usage: */
/* mrttest3 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_sysstat_t stats;
 int rcode;

 rcode = mrt_getsstat(&stats);
 printf("mrt_getsstat: rcode=%d.\n\n", rcode);
 if(rcode != 0) exit(1);
 printf("schedulings = %-d\n",stats.scheds);
 printf("messages = %-d\n",stats.messages);
 printf("interrupts = %-d\n",stats.interrupts);
 printf("ticks = %-d:%-d\n",stats.highticks,stats.ticks);
 printf("idle last/max = %-d/%-d\n",stats.idlelast,stats.idlemax);
}

B.8. mrttest3b.c

This program displays a graph of CPU usage.

Listing B.8: mrttest3b.c

/***/
/* mrttest3b.c */
/* Test the mrt_getsstat() System Call displaying a graph of the CPU Usage */
/* Usage: */
/* mrttest3b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>

#include <minix/syslib.h>

#define TOPSCALE 70

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_sysstat_t stats;
 int rcode, i, j;
 long cpu,idle;
printf(" CPU USAGE\n");
printf("|------10-----20-----30-----40-----50-----60-----70-----80-----90----
100\n");
 for(i = 0; i < 20; i++)
 {
 rcode = mrt_getsstat(&stats);
 if(rcode != 0)
 {
 printf("mrt_getsstat: rcode=%d.\n\n", rcode);
 exit(rcode);
 }
 else
 printf("|");
 idle = (stats.idlelast*TOPSCALE);
 idle /= stats.idlemax;
 cpu = (TOPSCALE - idle);
 for(j = 0; j < cpu; j++)
 printf("#");
 printf("\n");
 sleep(1);
 }
}

B.9. mrttest3c.c

This program gets and displays System processing values.

Listing B.9: mrttest3c.c

/***/
/* mrttest3c.c */
/* Test the mrt_getsval() System Call to get System Values */
/* Usage: */
/* mrttest3c */
/***/

#include <minix/config.h>

#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_sysval_t val;
 int rcode;

 rcode = mrt_getsval(&val);
 printf("mrt_getsval: rcode=%d.\n\n", rcode);
 if(rcode != 0) exit(1);

 printf("flags = x%-X\n",val.flags);
 printf("virtual_PIC = x%-X\n",val.virtual_PIC);
 printf("PIT_latency = %-d\n",val.PIT_latency);
 printf("PIT_latch = %-d\n",val.PIT_latch);
 printf("tickrate = %-d\n",val.tickrate);
 printf("harmonic = %-d\n",val.harmonic);
 printf("refresh = %-d\n",val.refresh);
}

B.10. mrttest4.c

This program gets and displays Process Descriptor Attributes.

Listing B.10: mrttest4.c

/***/
/* mrttest4.c */
/* Test the mrt_getpattr() System Call to get Process Descriptor Attributes */
/* Usage: */
/* mrttest4 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char **argv;
{
 mrt_pattr_t pattr;
 int rcode;
 pid_t pid;

 if(argc != 2)
 {
 printf("format: mrttest4 <pid>\n");
 exit(1);
 }
 pid = atoi(argv[1]);

 rcode = mrt_getpattr(pid, &pattr);
 if(rcode != 0)
 {
 printf("mrt_getpattr: pid= %d rcode=%5d.\n", pid, rcode);
 exit(1);
 }

 printf("flags = %X\n",pattr.flags);
 printf("baseprty = %X\n",pattr.baseprty);
 printf("period = %d\n",pattr.period);
 printf("limit = %d\n",pattr.limit);
 printf("deadline = %d\n",pattr.deadline);
 printf("watchdog = %d\n",pattr.watchdog);
 printf("MQ size = %d\n",pattr.mq_size);
 printf("MQ flags = %X\n",pattr.mq_flags);
}

B.11. mrttest4b.c

This program sets Process Descriptor Attributes.

Listing B.11: mrttest4b.c

/***/
/* mrttest4b.c */
/* Test the mrt_setpattr() System Call to set Process Descriptor Attributes */
/* Usage: */
/* mrttest4b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char **argv;
{
 mrt_pattr_t pattr;
 int rcode;

 pattr.flags = (MRT_P_REALTIME | MRT_P_PERIODIC);
 pattr.baseprty = MRT_PRI03;
 pattr.period = 10;
 pattr.limit = 222;
 pattr.deadline = 11;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {

 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("Process Attributes set\n");
 sleep(60);
}

B.12. mrttest5.c

This program gets and displays Process Descriptor statistical fields.

Listing B.12: mrttest5.c

/***/
/* mrttest5.c */
/* Test the mrt_getpstat() System Call to get Process Statistics */
/* Usage: */
/* mrttest5 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pstat_t pstats;
 int rcode;
 pid_t pid;

 if (argc == 2)
 pid = atoi(argv[1]);
 else
 pid = getpid();

 rcode = mrt_getpstat(pid, &pstats);
 printf("mrt_getpstat: pid = %d, rcode=%5d.\n", pid, rcode);
 if(rcode != 0) exit(1);

 printf("scheds = %10d\n",pstats.scheds);
 printf("mdl = %10d\n",pstats.mdl);
 printf("timestamp = %10d\n",pstats.timestamp);
 printf("maxlat = %10d\n",pstats.maxlat);
 printf("minlax = %10d\n",pstats.minlax);
 printf("msgsent = %10d\n",pstats.msgsent);
 printf("msgrcvd = %10d\n",pstats.msgrcvd);
}

B.13. mrttest5b.c

This program gets and displays Process Descriptor internal use fields.

Listing B.13: mrttest5b.c

/***/
/* mrttest5b.c */
/* Test the mrt_getpint() System Call to get Process Internal Data */
/* Usage: */
/* mrttest5b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pint_t pint;
 int rcode;
 pid_t pid;

 if (argc == 2)
 pid = atoi(argv[1]);
 else
 pid = getpid();

 rcode = mrt_getpint(pid, &pint);
 printf("mrt_getpint: pid = %d, rcode=%5d.\n", pid, rcode);
 if(rcode != 0) exit(1);
 printf("vt = %d\n",pint.vt);
 printf("priority = %d\n",pint.priority);
 printf("mqId = %d\n",pint.mqID);
 printf("p_nr = %d\n",pint.p_nr);
}

B.14. mrttest5c.c

This program clears Process Descriptor statistical fields.

Listing B.14: mrttest5c.c

/***/
/* mrttest5c.c */
/* Test the mrt_getiattr() System Call to clear Process statistics */
/* Usage: */

/* mrttest5C */
/***/
/* MRT test 5c: mrt_clrpstat */

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 int rcode;
 pid_t pid;

 if (argc == 2)
 pid = atoi(argv[1]);
 else
 pid = getpid();

 rcode = mrt_clrpstat(pid);
 printf("mrt_clrpstat: pid = %d, rcode=%5d.\n", pid, rcode);
 if(rcode != 0) exit(1);
 printf("Process %d statistics cleared\n",pid);
}

B.15. mrttest6.c

This program:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself the process is converted into a RT-process.

− Converts itself back into a NRT-process.

− Displays its process descriptor statistics.

Listing B.15: mrttest6.c

/***/
/* mrttest6.c */
/* Test the mrt_set2rt(), mrt_print() and mrt_set2nrt() System Call */
/* Usage: */
/* mrttest6 */
/***/

#include <minix/config.h>

#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t pattr;
 mrt_pstat_t pstats;
 int rcode, pid;

 pattr.flags = MRT_P_REALTIME;
 pattr.baseprty = MRT_PRI03;
 pattr.period = 0;
 pattr.limit = 0;
 pattr.deadline = 0;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {
 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }
 rcode = mrt_print("THAT'S ALL FOLKS!!");
 if(rcode != 0)
 {
 printf("mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_set2nrt();
 pid = getpid();

 rcode = mrt_getpstat(pid, &pstats);
 printf("mrt_getpstat: pid = %d, rcode=%5d.\n", pid, rcode);
 if(rcode != 0) exit(1);

 printf("scheds = %10d\n",pstats.scheds);
 printf("mdl = %10d\n",pstats.mdl);
 printf("timestamp = %10d\n",pstats.timestamp);
 printf("maxlat = %10d\n",pstats.maxlat);
 printf("minlax = %10d\n",pstats.minlax);
 printf("msgsent = %10d\n",pstats.msgsent);
 printf("msgrcvd = %10d\n",pstats.msgrcvd);
}

B.16. mrttest6b.c

This program:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself the process is converted into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Exits without calling mrt_set2nrt()Kernel Call.

Listing B.16: mrttest6b.c

/***/
/* mrttest6b.c */
/* Test the mrt_set2rt(), mrt_print() and _exit System Call */
/* Usage: */
/* mrttest6b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t pattr;
 mrt_pstat_t pstats;
 int rcode, pid;

 pattr.flags = MRT_P_REALTIME;
 pattr.baseprty = MRT_PRI03;
 pattr.period = 0;
 pattr.limit = 0;
 pattr.deadline = 0;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {
 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else

 printf("Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("MRTPRINT mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("THAT'S ALL FOLKS!! Exit Without mrt_set2nrt");
}

B.17. mrttest6c.c

This program:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Blocks itself by 2000 Timer ticks

− Converts itself back into a NRT-process.

Listing B.17: mrttest6c.c

/***/
/* mrttest6c.c */
/* Test the mrt_set2rt(), mrt_print() and mrt_set2nrt(), mrt_sleep() Sys Calls */
/* Usage: */
/* mrttest6c */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));
int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t pattr;
 mrt_pstat_t pstats;

 int rcode, pid;

 pattr.flags = MRT_P_REALTIME;
 pattr.baseprty = MRT_PRI03;
 pattr.period = 0;
 pattr.limit = 0;
 pattr.deadline = 0;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {
 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("I am going to sleep...\n");
 if(rcode != 0)
 {
 printf("mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_sleep(200*10);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("mrt_sleep rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("I wake up...\n");
 if(rcode != 0)
 {
 printf("mrt_print2 rcode = %d\n",rcode);
 exit(1);
 }
 rcode = mrt_set2nrt();
}

B.18. mrttest6d.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Wakes up SON using mrt_wakeup() Kernel Call.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Sleeps (using mrt_sleep() Kernel Call) until FATHER will wake up it

− Converts itself back into a NRT-process.

Listing B.18: mrttest6d.c

/***/
/* mrttest6d.c */
/* Test the mrt_wakeup(), mrt_sleep() Sys Calls */
/* Usage: */
/* mrttest6d */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;

/*---*/
/* FATHER */
/*---*/

 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will wakeup my son [%d] in 20 secs\n"
 ,ppid,pid);
 sleep(20);

 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n"
 , pid, rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[FATHER] I will wakeup my son...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_wakeup(mrtpid);

 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_wakeup rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[FATHER] mrt_wakeup OK!!\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_set2nrt();

 printf("[FATHER]Bye\n");
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 printf("[SON] I am [%d], and I will change to RT and put on sleep\n"
 ,pid);
 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI03;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to sleep...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_sleep(MRT_FOREVER);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_sleep rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I wake up...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print2 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_set2nrt();
 printf("[SON]Bye\n");
 }
}

B.19. mrttest6e.c

This program forks into eleven processes, the FATHER and ten SONs:

The FATHER:

− Gets SONs’ process descriptor internal values to obtain their RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Wakes up ten SONs using mrt_wakeup() Kernel Call.

− Converts itself back into a NRT-process.

The SONs:

− Set their process descriptor attributes to convert themselves into RT-

processes.

− Convert themselves into RT-processes.

− Print texts on the system console using mrt_print() Kernel Calls.

− Sleep (using mrt_sleep() Kernel Call) until FATHER will wake up them.

− Convert themselves back into NRT-processes.

Listing B.19: mrttest6e.c

/***/
/* mrttest6e.c */
/* Test the mrt_sleep(), mrt_wakeup() Sys Calls */
/* Usage: */
/* mrttest6e */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode,i,j;
 pid_t pid[10], ppid;
 mrtpid_t mrtpid[10];
 mrt_pint_t pint[10];
/*---*/
/* FATHER */
/*---*/
 for(i = 0; i < 10 ; i++)
 pid[i] = 1;

 for(i = 0; i < 10 && pid[i] != 0 ; i++)
 pid[i] = fork();

 if(i == 10)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will wakeup my sons \n",ppid,pid);

 for (j = 0; j < 10; j++)
 {
 rcode = mrt_getpint(pid[j], &pint[j]);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d\n"
 ,pid[j], rcode);
 exit(1);
 }
 mrtpid[j].pid = pid[j];
 mrtpid[j].p_nr = pint[j].p_nr;
 }

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 mrt_print("[FATHER] I will wakeup my sons...\n");

 for (j = 0; j < 10; j++);
 mrt_wakeup(mrtpid[j]);

 rcode = mrt_set2nrt();

 printf("[FATHER]Bye\n");
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid[i] = getpid();
 printf("[SON]%d I am [%d], and I will change to RT and put on sleep\n"
 ,i,pid[i]);
 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI03;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to sleep...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_sleep(MRT_FOREVER);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_sleep rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I wake up...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print2 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_set2nrt();
 printf("[SON]%d Bye\n",i);
 }
}

B.20. mrttest7.c

This program test periodic processing.

− Sets its process descriptor attributes to convert itself into a Periodic RT-

process.

− Converts itself into a RT-process.

− Loops until it processing limit is reached

− Prints a text on each loop.

− When the processing limit is reached the process is set in stopped

setting the MRT_STOP bit of its flags.

Listing B.20: mrttest7.c

/***/
/* mrttest7.c */
/* Test a periodic process */
/* Usage: */
/* mrttest7 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t pattr;
 int rcode, pid;

 pattr.flags = MRT_P_REALTIME | MRT_P_PERIODIC;
 pattr.baseprty = MRT_PRI03;
 pattr.period = 50;
 pattr.limit = 10;
 pattr.deadline = 0;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {
 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("Entering in a loop...\n");
 if(rcode != 0)
 {
 printf("mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 do {
 mrt_print("loop\n");
 rcode = mrt_sleep(MRT_FOREVER);
 } while(rcode == 0);

}

B.21. mrttest7b.c

This program test periodic processing.

− Sets its process descriptor attributes to convert itself into a Periodic RT-

process.

− Converts itself into a RT-process.

− Loops five times.

− Prints a text on each loop.

− Converts itself back into a NRT-process.

Listing B.21: mrttest7b.c

/***/
/* mrttest7b.c */
/* Test a periodic process */
/* Usage: */
/* mrttest7b */
/***/
#include <minix/config.h>
#include <sys/types.h>

#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <minix/type.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t pattr;
 int rcode, pid,i;

 pattr.flags = MRT_P_REALTIME | MRT_P_PERIODIC;
 pattr.baseprty = MRT_PRI03;
 pattr.period = 500;
 pattr.limit = 0;
 pattr.deadline = 0;
 pattr.watchdog = -1;
 pattr.mq_size = 3;
 pattr.mq_flags = 0;

 rcode = mrt_setpattr(&pattr);
 if(rcode != 0)
 {
 printf("mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("Entering in a loop...\n");
 if(rcode != 0)
 {
 printf("mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 for(i = 0; i < 5; i++)
 {
 mrt_print("loop\n");
 rcode = mrt_sleep(MRT_FOREVER);
 }

 mrt_set2nrt();
 printf("exiting...\n");
}

B.22. mrttest8.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Send a request message to SON using mrt_rqst() Kernel Call.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Sleeps for 2000 Timer ticks.

− Converts itself back into a NRT-process.

Listing B.22: mrttest8.c

/***/
/* mrttest8.c */
/* Test the mrt_rqst() Kernel Call */
/* Usage: */
/* mrttest8 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>

#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));
int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will REQUEST my son [%d] in 10 secs\n"
 ,ppid,pid);
 sleep(10);

 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n"
 ,pid,rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[FATHER] I will rqst my son...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_rqst(mrtpid,&msg,10*200);

 mrt_set2nrt();
 printf("[FATHER] mrt_rqst rcode = %d\n",rcode);
 sleep(30);
 printf("[FATHER] bye\n");
 exit(0);
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 printf("[SON] I am [%d] , and I will change to RT and put on sleep\n"
 ,pid);
 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI03;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to sleep...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_sleep(60*200);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_sleep rcode = %d\n",rcode);
 exit(0);
 }

 rcode = mrt_print("[SON] I wake up...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print2 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_set2nrt();
 printf("[SON]Bye\n");
 }
}

B.23. mrttest8b.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Calls mrt_rcv() Kernel Call to receive a message from SON with a

timeout of 2000 Timer ticks.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Prints a text on the system console using mrt_print() Kernel Call.

− Sleeps for 2000 Timer ticks.

− Converts itself back into a NRT-process.

Listing B.23: mrttest8b.c

/***/
/* mrttest8b.c */
/* Test the mrt_rcv() Kernel Call */
/* Usage: */
/* mrttest8b */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>

#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
 mrt_mhdr_t hmsg;

/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d], I will RECEIVE msgs from [%d] in 10 secs\n"
 ,ppid,pid);
 sleep(10);
 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n"
 , pid,rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[FATHER] I will RECEIVE a msg from my son...\n");
 if(rcode != 0)

 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_rcv(mrtpid,&msg,&hmsg,10*200);
 mrt_set2nrt();
 printf("[FATHER] mrt_rcv rcode = %d\n",rcode);
 sleep(30);
 printf("[FATHER] bye\n");
 exit(0);
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 printf("[SON] I am [%d], and I will change to RT and put on sleep\n"
 ,pid);
 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI03;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 3;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to sleep...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_sleep(60*200);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_sleep rcode = %d\n",rcode);
 exit(0);
 }

 rcode = mrt_print("[SON] I wake up...\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print2 rcode = %d\n",rcode);

 exit(1);
 }

 rcode = mrt_set2nrt();
 printf("[SON]Bye\n");
 }
}

B.24. mrttest8c.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops 10 Times

− Sleeps for 2000 Timer ticks on each loop.

− Send a request message to SON on each loop.

− Prints a text on the system console using mrt_print() Kernel Call.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops forever

− Calls mrt_rcv() Kernel Call to receive a message from FATHER.

− Prints the message content on the system console using mrt_print()

Kernel Call.

Listing B.24: mrttest8c.c

/***/
/* mrttest8c.c */
/* Test the mrt_rqst() and mrt_rcv() Kernel Calls */
/* Usage: */
/* mrttest8c */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode,i;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
 mrt_mhdr_t hmsg;
 char text[50];

/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will REQUEST msgs to [%d]\n"
 ,ppid,pid);
 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n"
 ,pid,rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 1;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);

 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 mrt_print("[FATHER] I will REQUESTS 10 msgs to my son...\n");

 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 for(i = 0; i < 10; i++)
 {
 mrt_sleep(200*10);
 sprintf(msg.m_m7.m7ca1,"Hello son (%d)",i);
 rcode = mrt_rqst(mrtpid,&msg,MRT_FOREVER);
 if(rcode != 0)
 sprintf(text,"[FATHER] msg %d NOT sent\n",i);
 else
 sprintf(text,"[FATHER] msg %d sent\n",i);
 mrt_print(text);
 }

 mrt_set2nrt();
 sleep(30);
 printf("[FATHER] bye\n");
 exit(0);
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 ppid = getppid();
 printf("[SON] I am [%d], and I will change to RT and put on sleep\n"
 ,pid);
 rcode = mrt_getpint(ppid, &pint);
 if(rcode != 0)
 {
 printf("[SON] mrt_getpattr: pid=%d rcode=%5d.\n"
 ,ppid,rcode);
 exit(1);
 }
 mrtpid.pid = ppid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 10;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)

 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to RECEIVE messages..\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 i = 0;
 mrt_sleep(200*10);
 while(1)
 {
 rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_rcv rcode = %d\n",rcode);
 exit(1);
 }
 else
 {
 sprintf(text,"[SON]%d: %s",i,msg.m_m7.m7ca1);
 mrt_print(text);
 i++;
 }
 }

 }
}

B.25. mrttest8d.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops 10 Times

− Send an asynchronous request message to SON on each loop.

− Prints a text on the system console using mrt_print() Kernel Call.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops forever

− Calls mrt_rcv() Kernel Call to receive a message from FATHER.

− Prints the message content on the system console using mrt_print()

Kernel Call.

Listing B.25: mrttest8d.c

/***/
/* mrttest8d.c */
/* Test the mrt_arqst() and mrt_rcv() Kernel Calls */
/* Usage: */
/* mrttest8d */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));
int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode,i;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
 mrt_mhdr_t hmsg;
 char text[50];
/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)

 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will REQUEST msgs to [%d]\n"
 ,ppid,pid);
 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n"
 ,pid,rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 1;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 mrt_print("[FATHER] I will REQUESTS 10 msgs to my son...\n");

 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 mrt_sleep(200*10);

 for(i = 0; i < 10; i++)
 {
 sprintf(msg.m_m7.m7ca1,"Hello son (%d)",i);
 rcode = mrt_arqst(mrtpid,&msg);
 if(rcode != 0)
 sprintf(text,"[FATHER] msg %d NOT sent\n",i);
 else
 sprintf(text,"[FATHER] msg %d sent\n",i);
 mrt_print(text);
 }

 mrt_set2nrt();
 sleep(30);

 printf("[FATHER] bye\n");
 exit(0);
 }
/*---*/

/* SON */
/*---*/
 else
 {
 pid = getpid();
 ppid = getppid();
 printf("[SON] I am [%d], and I will change to RT and put on sleep\n"
 ,pid);
 rcode = mrt_getpint(ppid, &pint);
 if(rcode != 0)
 {
 printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n"
 ,ppid,rcode);
 exit(1);
 }

 mrtpid.pid = ppid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 10;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to RECEIVE messages..\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 i = 0;
 mrt_sleep(200*10);

 while(1)
 {
 rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER);
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_rcv rcode = %d\n",rcode);
 exit(1);
 }
 else
 {
 sprintf(text,"[SON]%d: %s",i,msg.m_m7.m7ca1);
 mrt_print(text);

 i++;
 }
 }
 }
}

B.26. mrttest8e.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Sends a request message to SON.

− Calls mrt_rcv() Kernel Call to receive the reply from SON.

− Prints the reply on the system console using mrt_print() Kernel Call.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Calls mrt_rcv() Kernel Call to receive a message from FATHER.

− Sends a reply message to FATHER.

− Prints the request on the system console using mrt_print() Kernel Call.

− Converts itself back into a NRT-process.

Listing B.26: mrttest8e.c

/***/
/* mrttest8e.c */
/* Test the mrt_rqst(), mrt_rcv(), mrt_rply() Kernel Calls */
/* Usage: */

/* mrttest8e */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;
 int rcode,i;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
 mrt_mhdr_t hmsg;
 char text[50];

/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will REQUEST to [%d]\n"
 ,ppid,pid);

 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n"
 ,pid,rcode);
 exit(1);
 }
 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 1;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();

 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 mrt_sleep(200*10);

 sprintf(msg.m_m7.m7ca1,"Hello SON (%d)",i);
 rcode = mrt_rqst(mrtpid,&msg,MRT_FOREVER);
 if(rcode != 0)
 sprintf(text,"[FATHER] mrt_rqst rcode %d\n",rcode);
 else
 sprintf(text,"[FATHER] msg %d request\n",i);
 mrt_print(text);

 rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER);
 if(rcode != 0)
 sprintf(text,"[FATHER] mrt_rcv error %d\n",rcode);
 else
 sprintf(text,"[FATHER] msg [%s] received\n",msg.m_m7.m7ca1);
 mrt_print(text);

 mrt_set2nrt();
 sleep(30);
 printf("[FATHER] bye\n");
 exit(0);
 }
/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 ppid = getppid();
 printf("[SON] I am [%d] , and I will change to RT and put on sleep\n"
 ,pid);
 rcode = mrt_getpint(ppid, &pint);
 if(rcode != 0)
 {
 printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n"
 ,ppid,rcode);
 exit(1);
 }
 mrtpid.pid = ppid;
 mrtpid.p_nr = MRT_ANYPROC;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 10;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);

 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to RECEIVE messages..\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 i = 0;
 rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER);
 if(rcode != 0)
 sprintf(text,"[SON] mrt_rcv error %d\n",rcode);
 else
 sprintf(text,"[SON] msg [%s] received\n",msg.m_m7.m7ca1);
 mrt_print(text);

 sprintf(msg.m_m7.m7ca1,"Hello DAD (%d)",i);

 rcode = mrt_reply(hmsg.src,&msg);
 if(rcode != 0)
 sprintf(text,"[SON] mrt_reply rcode %d\n",rcode);
 else
 sprintf(text,"[SON] msg %d reply\n",i);
 mrt_print(text);

 mrt_set2nrt();
 printf("Message Header\n");
 printf("Source %d/%d \n",hmsg.src.pid,hmsg.src.p_nr);
 printf("Dest %d/%d \n",hmsg.dst.pid,hmsg.dst.p_nr);
 printf("Mtype %d\n",hmsg.mtype);
 printf("Mid\seqno %d/%d\n",hmsg.mid,hmsg.seqno);
 printf("Tstamp %d\n",hmsg.tstamp);
 printf("Priority %d\n",hmsg.priority);
 printf("Deadline %d\n",hmsg.deadline);
 printf("Laxity %d\n",hmsg.laxity);
 printf("Timeout %d\n",hmsg.timeout);
 printf("[SON] bye\n");
 exit(0);
 }
}

B.27. mrttest9.c

This program forks into two processes, the FATHER and the SON:

The FATHER:

− Gets SON’s process descriptor internal values to obtain its RT-PID.

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops 5 times

− Sends an up request message to SON on each loop.

− Converts itself back into a NRT-process.

The SON:

− Sets its process descriptor attributes to convert itself into a RT-process.

− Converts itself into a RT-process.

− Loops forever.

− Calls mrt_rcv() Kernel Call to receive a message from FATHER on

each loop.

− Prints the request on the system console using mrt_print() Kernel Call

on each loop.

Listing B.27: mrttest9.c

/***/
/* mrttest9.c */
/* Test the mrt_uprqst() and mrt_rcv() Kernel Calls */
/* Usage: */
/* mrttest9 */
/***/

#include <minix/config.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <lib.h>
#include <minix/syslib.h>

_PROTOTYPE(int main, (int argc, char *argv []));

int main(argc, argv)
int argc;
char *argv[];
{
 mrt_pattr_t s_pattr, f_pattr;

 int rcode,i;
 pid_t pid, ppid;
 mrtpid_t mrtpid;
 mrt_pint_t pint;
 mrt_msg_t msg;
 mrt_mhdr_t hmsg;
 char text[50];

/*---*/
/* FATHER */
/*---*/
 if((pid = fork()) != 0)
 {
 ppid = getpid();
 printf("[FATHER]I am [%d],I will UP REQUEST to my son [%d]\n"
 ,ppid,pid);

 rcode = mrt_getpint(pid, &pint);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n"
 , pid, rcode);
 exit(1);
 }

 mrtpid.pid = pid;
 mrtpid.p_nr = pint.p_nr;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 1;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[FATHER] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[FATHER] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[FATHER] mrt_print rcode = %d\n",rcode);
 exit(1);
 }

 mrt_sleep(200*10);

 for (i = 0; i < 5 ; i++)
 {
 sprintf(msg.m_m7.m7ca1,"Hello SON (%d)",i);
 rcode = mrt_uprqst(mrtpid,&msg,MRT_PRI02);
 if(rcode != 0)
 sprintf(text,"[FATHER] mrt_uprqst rcode %d\n",rcode);

 else
 sprintf(text,"[FATHER] msg %d UP request\n",i);
 mrt_print(text);
 }

 mrt_set2nrt();
 printf("[FATHER] bye\n");
 exit(0);
 }

/*---*/
/* SON */
/*---*/
 else
 {
 pid = getpid();
 ppid = getppid();
 printf("[SON] I am [%d] , and I will change to RT and put on sleep\n"
 ,pid);

 rcode = mrt_getpint(ppid, &pint);
 if(rcode != 0)
 {
 printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n"
 ,ppid,rcode);
 exit(1);
 }
 mrtpid.pid = ppid;
 mrtpid.p_nr = MRT_ANYPROC;

 s_pattr.flags = MRT_P_REALTIME;
 s_pattr.baseprty = MRT_PRI04;
 s_pattr.period = 0;
 s_pattr.limit = 0;
 s_pattr.deadline = 0;
 s_pattr.watchdog = -1;
 s_pattr.mq_size = 10;
 s_pattr.mq_flags = 0;

 rcode = mrt_setpattr(&s_pattr);
 if(rcode != 0)
 {
 printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode);
 exit(1);
 }
 else
 printf("[SON] Process Attributes set\n");

 rcode = mrt_set2rt();
 if(rcode != 0)
 {
 printf("[SON] mrt_set2rt rcode = %d\n",rcode);
 exit(1);
 }

 rcode = mrt_print("[SON] I am going to RECEIVE messages..\n");
 if(rcode != 0)
 {
 mrt_set2nrt();
 printf("[SON] mrt_print1 rcode = %d\n",rcode);
 exit(1);
 }

 while(1)
 {
 rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER);
 if(rcode != 0)
 sprintf(text,"[SON] mrt_rcv error %d\n",rcode);

 else
 sprintf(text,"[SON] msg [%s] received\n",msg.m_m7.m7ca1);
 mrt_print(text);
 }
 }
}

Appendix C: PERFORMANCE TESTS

This appendix describe the set of tests carried out on MINIX4RT. The first set that are focused

on interrupt service times and Timer services timeliness were performed by Felipe Ieder and Nicolas

Cesar as a laboratory practice of Real-Time Operating Systems at Facultad Regional Santa Fe of

Universidad Tecnológica Nacional (FRSF-UTN) in May 2004. Because the FRSF-UTN does not have

suitable equipment, the methods used for the tests are not rigurous, therefore the results are not

accurated.

The set of test on RT-IPC perfomance were performed by the author in December 2005 using

an up-to-date kernel.

C.1. Interrupt Service Time

The interrupt service time tests include different options for interrupt handlers.

− Event Driven Interrupt Handler

− Timer Driven Interrupt Handler

− Software Interrupt Handler

The tests were carried out using three different frequencies of interrupts.(1000, 5000 and

10000 [Hz]). The parallel port was used as the source of interrupts for the set of tests.

The equipment used for the test was:

− LUNIX: Intel Pentium III 800MHz, 256 MB RAM, Hard Disk

80GB,Chipset VIA Software: RT Linux with kernel 2.4.21 on Mandrake

9.1. This computer was used as the monitor machine.

− PAP: IBM Model 370C Notebook, Intel® DX4 75MHz on system

board, AT Bus, Memory 8 MB, Diskette Drive 1.44MB, Hard Disk Drive

540MB 2.5-inch, PCMCIA One Type-III or two Type-II. Software:

MINIX4RT (Kernel 28042004). This computer was used as tested machine.

The tests are performed under different kinds of load for the system:

− No load (NOLoad): All background processes that are started at init are

killed before the test.

− I/O Diskette Load (DKTLoad): A process access files on a diskette

during the test. The diskette interrupt descriptor is Real-Time Timer Driven

with a priority lower than the parallel port.

− I/O Disk Load(HDLoad): A process access files on the hard disk during

the test.

− CPU Load(CPULoad): A script load the CPU without any I/O operation

during the test.

C.1.1. Delay of RTLinux

Before testing MINIX4RT, a set of tests were carried out over the system that made

the measurements. A parallel port loop was made using a DB25 male connector to connect

D1 (pin 3) with ACK (pin 10) of the parallel port (see Figure C.1 and Figure C.2).

Figure C.1: Delay test of LUNIX (RTLinux)

Figure C.2: DB25 Male Connector

A process in LUNIX machine generate a pulse on pin D1, that generates a parallel

port interrupt. The time elapsed beetween the pulse generation and the service of the parallel

port interrupt is considered as the delay of the LUNIX machine that must be subtracted from

the measurements as is explained en Section C.1.2. The results of LUNIX tests are showed in

Table C.1.

Table C.1: Delay of LUNIX (RTLinux).

 Frequecy [Hz]

Delay [ns] 10000 5000 1000

Average 8379 8378 8340

Standard Deviation 670 606 212

Minimum 7872 7968 8032

Maximum 16576 17728 11648

C.1.2. Interrupt Service Time Tests of MINIX4RT

The tests were performed conecting the LUNIX machine with PAP machine (see

Figure C.3) using a parallel port cable with the pinout detailled in Table C.2.

Table C.2: Testing Cable Pinout

The following is the sequence of events of the tests:

− LUNIX generates a pulse on a parallel port Data Bit (D3) that produces a

parallel port interrupt on PAP (ACK).

− The parallel port interrupt handler of PAP generates a pulse pulse on a

parallel port Data Bit (D3) that produces an interrupt on LUNIX (ACK).

The time elapsed beetween the pulse generation on LUNIX and the parallel port

interrupt service in LUNIX is considered as the delay of the LUNIX machine plus the

MINIX4RT interrupt service time.

Figure C.3: Interrupt Service Time Tests of MINIX4RT

C.1.3. Interrupt Service Time of Software Interrupts

This section shows the tests results of Interrupt Service Time for Software interrupts.

The RT-interrupt handler triggers a Software Interrupt that generates the response pulse on

the parallel port.

Table C.4: Interrupt Service Time of Software Interrupts for 10000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 41841 42777 43752 40974

Standard Deviation 6594 7948 8027 8104

Minimum 10112 30528 30368 30528

Maximum 100320 105920 117569 151456

Table C.5: Interrupt Service Time of Software Interrupts for 5000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 33085 42916 38622 43732

Standard Deviation 3135 4030 2759 4216

Minimum 30592 31552 33152 30624

Maximum 69792 87200 58976 88288

Table C.6: Interrupt Service Time of Software Interrupts for 1000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 38319 44443 39652 35986

Standard Deviation 6865 7523 2582 6534

Minimum 30688 30848 35712 30688

Maximum 62304 59584 51008 87264

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microseg]

Software Interrupts [10000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.4: Interrupt Service Time for Software Interrupts for 10000 [Hz]

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microsec]

Software Interrupts [5000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.5: Interrupt Service Time for Software Interrupts for 5000 [Hz]

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microsec]

Software Interrupts [1000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.6: Interrupt Service Time for Software Interrupts for 1000 [Hz]

C.1.4. Interrupt Service Time of Event-Driven Interrupts

This section describe the tests results of Interrupt Service Time for Event-Driven

interrupts. The RT-interrupt handler generates the response pulse on the parallel port.

Table C.7: Interrupt Service Time of Event-Driven Interrupts for 10000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 26395 38525 39909 37556

Standard Deviation 8709 9239 9309 9786

Minimum 21888 21888 21856 21376

Maximum 100352 89632 122816 55904

Table C.8: Interrupt Service Time of Event-Driven Interrupts for 5000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 38685 41094 41706 40368

Standard Deviation 8303 6131 5355 6857

Minimum 21824 21888 23168 21536

Maximum 75392 82560 83424 52608

Table C.9: Interrupt Service Time of Event-Driven Interrupts for 1000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 31092 33790 33506 29895

Standard Deviation 10294 10445 9100 10284

Minimum 21824 22144 23232 22144

Maximum 69664 90912 92896 86464

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microsec]

ED-Interrupts [10000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.7: Interrupt Service Time for ED-Interrupts [10000 Hz]

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microsec]

ED-Interrupts [5000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.8: Interrupt Service Time for ED-Interrupts [5000 Hz]

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

0,00

10,00

20,00

30,00

40,00

50,00

60,00

%

Interrupt Service Time [microsec]

ED-Interrupts [1000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.9: Interrupt Service Time for ED-Interrupts [1000 Hz]

C.1.5. Interrupt Service Time of Timer-Driven Interrupts

This section describe the tests results Interrupt Service Time of Timer-Driven

interrupts. In this tests, the RT-interrupt handler sets the interrupt descriptor to be executed

in the next Timer Interrupt. The TD-Interrupt descriptor generates the response pulse on the

parallel port. The Timer interrupt frequency was 5000 [Hz].

Table C.10: Interrupt Service Time of Timer-Driven Interrupts for 1000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 532139 462369 322101 256622

Standard Deviation 24242 27099 21207 23484

Minimum 488544 412416 288832 215616

Maximum 610688 540256 378624 314464

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

0,00

5,00

10,00

15,00

20,00

25,00

%

Interrupt Service Time [microsec]

TD-Interrupts [1000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.10: Interrupt Service Time for TD-Interrupts [1000 Hz]

C.2. Virtual Timer Timeliness

A periodic RT-application correctness depends on the timeliness of its scheduling.

MINIX4RT implements periodic processessing using Virtual Timers facilities. Therefore, the

timeliness of Virtual Timers is an important measurament that evaluates performance of a RTOS.

These tests were carried out using the same equipment and loads as in Section C.1.

Table C.11: Virtual Timer Timeliness for 10000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 99524 99524 99730 99732

Standard Deviation 6773 7371 7079 6528

Minimum 39968 53760 62880 60320

Maximum 123712 142848 127264 138688

Table C.12: Virtual Timer Timeliness for 5000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 199456 199447 199465 199464

Standard Deviation 5228 9341 3335 1614

Minimum 167328 154592 155232 183904

Maximum 233632 246432 242880 213536

Table C.13: Virtual Timer Timeliness for 1000 [Hz]

Delay [ns] DKTLoad HDLoad CPULoad NOLoad

Average 999833 999772 999839 999799

Standard Deviation 7277 12511 3625 3896

Minimum 955424 936064 961024 975520

Maximum 1048064 1041728 1038496 1023712

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

1
1
0

1
1
2

1
1
4

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

%

PERIOD [microsec]

TIMELINESS [10000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.11: Virtual Timer Timeliness for 10000 [Hz]

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

0,00

10,00

20,00

30,00

40,00

50,00

%

PERIOD [microsec]

TIMELINESS [5000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.12: Virtual Timer Timeliness for 5000 [Hz]

9
7
5

9
7
9

9
8
3

9
8
7

9
9
1

9
9
5

9
9
9

1
0
0
3

1
0
0
7

1
0
1
1

1
0
1
5

1
0
1
9

1
0
2
3

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

%

PERIOD [microsec]

TIMELINESS [1000 Hz]

DKT Load

HD Load

CPU Load

No Load

Figure C.13: Virtual Timer Timeliness for 1000 [Hz]

C.3. RT-IPC performance

The equipment used for the tests was:

− PAP: IBM Model 370C Notebook, Intel® DX4 75MHz on system

board, AT Bus, Memory 8 MB, Diskette Drive 1.44MB, Hard Disk Drive

540MB 2.5-inch, PCMCIA One Type-III or two Type-II. Software:

MINIX4RT (Kernel 20122005).

As in MINIX4RT messages can be transfered in two ways (synchronous or asynchronous) and

with or without priority inheritance (BPIP), four sets of tests were carried out to evaluate the

performance of each.

C.3.1. Synchronous Message Transfers Tests without BPIP and without

Timeouts

Table C.14 shows the test results. Listing C.1 shows pseudocode of two programs:

− FATHER: Makes a loop sending request messages to SON and

receiving the replies.

− SON: Makes a loop receiving request messages and sending replies.

Listing C.1: Pseudocode of Programs to Test Synchronous Message Transfers without BPIP and

without Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 10000; i++)
 {
 mrt_rqst(SON,&rqst,MRT_FOREVER);
 mrt_rcv(SON,&rply,&hrply,MRT_FOREVER);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 mrt_rcv(FATHER,&rqst,&hrqst,MRT_FOREVER);
 mrt_reply(FATHER,&rply);
 }

}

Table C.14: Synchronous Message Transfers Test Results without BPIP and without Timeouts

Clock Freq 1000 ticks/s

Testing time 1925 ticks

mrt_arqst 10000 msgs

mrt_reply 10000 msgs

Total msg 20000 msgs

Throughput 10390 msgs/s

RT-schedulings 20000 scheds

Time by msg 96 microsec/msg

C.3.2. Asynchronous Message Transfers Tests without BPIP and without

Timeouts

Table C.15 shows the test results. Listing C.2 shows pseudocode of two processes:

− FATHER: makes two loops. An internal loop sending 10 asynchronous

request messages to SON. An an external loop receiving replies.

− SON: makes two loops. An internal loop receiving 10 messages from

FATHER. An an external loop sending replies.

Listing C.2: Pseudocode of Programs to Test Asynchronous Message Transfers without BPIP

and without Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 1000; i++)
 {
 for(j = 0; j < 10; j++)
 mrt_arqst(SON,&rqst);
 mrt_rcv(SON,&rply,&hrply,MRT_FOREVER);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 for(j = 0; j < 10; j++)
 mrt_rcv(mrtpid,&rqst,&hrqst,MRT_FOREVER);
 mrt_reply(mrtpid,&rply);
 }

}

Table C.15: Asynchronous Message Transfers Test Results without BPIP and without Timeouts

Clock Freq 1000 ticks/s

Testing time 993 ticks

mrt_arqst 10000 msgs

mrt_reply 1000 msgs

Total msg 11000 msgs

Throughput 11078 msgs/s

RT-schedulings 4000 scheds

Time by msg 90 microsec/msg

C.3.3. Synchronous Message Transfers Tests with BPIP and without

Timeouts

This test was carried out using the programs of C.3.1. Table C.16 shows the test results.

Table C.16: Synchronous Message Transfers Test Results with BPIP and without Timeouts

Clock Freq 1000 ticks/s

Testing time 2164 ticks

mrt_arqst 10000 msgs

mrt_reply 10000 msgs

Total msg 20000 msgs

Throughput 9242 msgs/s

RT-schedulings 20000 scheds

Time by msg 108 microsec/msg

C.3.4. Asynchronous Message Transfers Tests with BBIP and without

Timeouts

This test was carried out using the programs of C.3.2. Table C.17 shows the test results.

Table C.17: Asynchronous Message Transfers Test Results with BPIP and without Timeouts

Clock Freq 1000 ticks/s

Testing time 1008 ticks

mrt_arqst 10000 msgs

mrt_reply 1000 msgs

Total msg 11000 msgs

Throughput 10912 msgs/s

RT-schedulings 4000 scheds

Time by msg 91 microsec/msg

C.3.5. Request/Receive Tests with BPIP and without Timeouts

Table C.18 shows the test results. Listing C.3 shows pseudocode of two programs:

− FATHER: Makes a loop sending request messages to SON and

receiving the replies using the mrt_rqrcv() kernel call.

− SON: Makes a loop receiving request messages and sending replies.

Listing C.3: Pseudocode of Programs to Test Request/Receive with BPIP and without Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 10000; i++)
 {
 mrt_rqrcv(SON,&rqst,&rply,&hrply,MRT_FOREVER);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 mrt_rcv(FATHER,&rqst,&hrqst,MRT_FOREVER);
 mrt_reply(FATHER,&rply);
 }

}

Table C.18 Request/Receive Test Results with BPIP and without Timeouts

Clock Freq 1000 ticks/s

Testing time 1749 ticks

mrt_rqrcv 10000 msgs

mrt_reply 10000 msgs

Total msg 20000 msgs

Throughput 11435 msgs/s

RT-schedulings 20000 scheds

Time by msg 87 microsec/msg

C.3.6. Synchronous Message Transfers Tests with BPIP and with Timeouts

Table C.19 shows the test results. Listing C.4shows pseudocode of two processes:

Listing C.4: Pseudocode of Programs to Test Synchronous Message Transfers with BPIP and

with Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 10000; i++)
 {
 mrt_rqst(SON,&rqst, 60*1000);

 mrt_rcv(SON,&rply,&hrply,60*1000);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 mrt_rcv(FATHER,&rqst,&hrqst, 60*1000);
 mrt_reply(FATHER,&rply);
 }

}

Table C.19: Synchronous Message Transfers Test Results with BPIP and with Timeouts

Clock Freq 1000 ticks/s

Testing time 2222 ticks

mrt_arqst 10000 msgs

mrt_reply 10000 msgs

Total msg 20000 msgs

Throughput 9000 msgs/s

RT-schedulings 20000 scheds

Time by msg 111 microsec/msg

C.3.7. Asynchronous Message Transfers Tests with BBIP and with Timouts

Table C.20 shows the test results. Listing C.5 shows pseudocode of two processes:

Listing C.5: Pseudocode of Programs to Test Asynchronous Message Transfers with BPIP and

with Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 1000; i++)
 {
 for(j = 0; j < 10; j++)
 mrt_arqst(SON,&rqst);
 mrt_rcv(SON,&rply,&hrply,60*1000);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 for(j = 0; j < 10; j++)
 mrt_rcv(mrtpid,&rqst,&hrqst,60*1000);
 mrt_reply(mrtpid,&rply);
 }
}

Table C.20: Asynchronous Message Transfers Test Results with BPIP and without Timouts

Clock Freq 1000 ticks/s

Testing time 1071 ticks

mrt_arqst 10000 msgs

mrt_reply 1000 msgs

Total msg 11000 msgs

Throughput 10270 msgs/s

RT-schedulings 4000 scheds

Time by msg 97 microsec/msg

C.3.8. Test Request/Receive Tests with BPIP and with Timeouts

Table C.21 shows the test results. Listing C.6 shows pseudocode of two processes:

Listing C.6: Pseudocode of Programs to Test Synchronous Message Transfers with BPIP and

with Timeouts

father()
{

 before = get_sys_ticks(); /* pseudo code */
 for(i = 0; i < 10000; i++)
 {
 mrt_rqrcv(SON,&rqst,.&rply,&hrply,60*1000);
 }
 testime = get_sys_ticks() - before; /* pseudo code */

}
son()
{

 while(1)
 {
 mrt_rcv(FATHER,&rqst,&hrqst, 60*1000);
 mrt_reply(FATHER,&rply);
 }

}

Table C.21: Synchronous Message Transfers Test Results with BPIP and with Timeouts

Clock Freq 1000 ticks/s

Testing time 1754 ticks

mrt_rqrcv 10000 msgs

mrt_reply 10000 msgs

Total msg 20000 msgs

Throughput 11402 msgs/s

RT-schedulings 20000 scheds

Time by msg 87 microsec/msg

C.3.9. RT-IPC Tests Results

Figure C.11 shows a comparison of Message Time for all tests.

MESSAGE TIME

0

20

40

60

80

100

120

TE
S
T
1

TE
S
T2

TE
S
T3

TE
S
T4

TE
S
T5

TE
S
T6

TE
S
T7

TE
S
T8

M
e
s
s
a
g
e
 T
im
e
 [
m
ic
ro
s
e
c
s
]

Figure C.11: Virtual Timer Timeliness for 10000 [Hz]

Figure C.12 shows a comparison of Message Thoughput for all tests.

THROUGHPUT

0

2000

4000

6000

8000

10000

12000

14000

TE
S
T
1

TE
S
T2

TE
S
T3

TE
S
T4

TE
S
T5

TE
S
T6

TE
S
T7

TE
S
T8

T
h
ro
u
g
h
p
u
t
[m
e
s
s
a
g
e
s
/s
e
c
]

Figure C.12: Virtual Timer Timeliness for 10000 [Hz]

Appendix D: SYSTEM DATA STRUCTURES

D.1. User-Level Data Structures

The following data structures are used by User-Level programs.

D.1.1. System-wide Data Structures

Listing D.1: System-wide Data Structures.

/*--------------------------- SYSTEM WIDE STATISTICS -------------------------*/
struct mrt_sysstat_s {
 lcounter_t scheds; /* schedules counter */
 lcounter_t messages; /* message counter - ID count */
 lcounter_t interrupts; /* Interrupt counter */
 lcounter_t ticks; /* Less Significative tick counter */
 lcounter_t highticks; /* More Significative tick counter */
 lcounter_t idlemax; /* Maximun idle counter */
 lcounter_t idlelast; /* last idle counter */
 };
typedef struct mrt_sysstat_s mrt_sysstat_t;

/*--------------------------- SYSTEM OPERATIONAL VALUES ----------------------*/
struct mrt_sysval_s {
 unsigned int flags;
 bitmap16_t virtual_PIC; /* Virtual PIC for MINIX */
 lcounter_t PIT_latency; /* PIT latency in Hz between two reads */
 unsigned PIT_latch; /* TIMER_FREQ/MRT_tickrate */
 scounter_t tickrate; /* Real-Time ticks by second */
 scounter_t harmonic; /* MRT_tickrate = MRT_harmonic x HZ */
 scounter_t refresh; /* Idle refresh tick count */
 };
typedef struct mrt_sysval_s mrt_sysval_t;

D.1.2. Interrupt-related Data Structures

Listing D.2: Interrupt-related Data Structures.

/*--------------------------- IRQ SPECIFIED ARGUMENTS ------------------------*/
struct mrt_irqattr_s {
 lcounter_t period; /* For Timer Driven period in ticks */
 proc_nbr_t task; /* Real Time task number */

 proc_nbr_t watchdog; /* Interrupt Watch dog process */
 priority_t priority; /* RT or NRT priority */
 irq_type_t irqtype; /* IRQ Type */
 char name[MAXPNAME];/* name of the RT driver */
 };
typedef struct mrt_irqattr_s mrt_irqattr_t;

/*--------------------------- IRQ STATISTICS ----------------------------------*/
struct mrt_irqstat_s {
 lcounter_t count; /* Interrupt counter */
 scounter_t maxshower; /* Maximum shower value */
 lcounter_t mdl; /* Missed Deadlines */
 lcounter_t timestamp; /* Last Interrupt timestamp */
 lcounter_t maxlat; /* Maximun Interrupt latency PIT Hz */
 int reenter; /* Maximun reentrancy level */
 };
typedef struct mrt_irqstat_s mrt_irqstat_t;

/*--------------------------- IRQ INTERNAL ------------------------------------*/
struct mrt_irqint_s {
 int irq; /* irq number */
 scounter_t harmonic; /* MRT_sv.harmonic when mrtode starts */
 int vtimer; /* VT assigned for Timer Driven IRQs */
 int flags; /* MRT_ENQUEUED, MRT_TRIGGEREG */
 };
typedef struct mrt_irqint_s mrt_irqint_t;

D.1.3. Process-related Data Structures

Listing D.3: Process-related Data Structures.

struct mrtpid_s {
 pid_t pid; /* request destination PID */
 int p_nr; /* request destination number */
 };
typedef struct mrtpid_s mrtpid_t;

struct mrt_pattr_s {
 int flags; /* Real Time Flags */
 priority_t baseprty; /* Real Time BASE priority */
 lcounter_t period; /* period in RT-ticks */
 scounter_t limit; /* max number of process
schedulings*/
 lcounter_t deadline; /* process deadline */
 int watchdog; /* Watchdog process */
 scounter_t mq_size; /* Message Queue Size */
unsigned int mq_flags; /* Message Queue Policy Flags */
 };
typedef struct mrt_pattr_s mrt_pattr_t;

struct mrt_pstat_s {
 lcounter_t scheds; /* number of schedules */
 lcounter_t mdl; /* Missed DeadLines */
 lcounter_t timestamp; /* Last schedule timestamp in ticks*/
 lcounter_t maxlat; /* Maximun latency in timer Hz */
 scounter_t minlax; /* Minimun laxity in timer Hz */
 lcounter_t msgsent; /* Messages sent by the process */
 lcounter_t msgrcvd; /* Messages received by the process*/
 };
typedef struct mrt_pstat_s mrt_pstat_t;

struct mrt_pint_s {
 int vt; /* VT timer ID for periodic process*/
 priority_t priority; /* Real Time EFECTIVE priority */
 scounter_t mqID; /* Message Queue ID */

 int p_nr; /* process slot */
 };
typedef struct mrt_pint_s mrt_pint_t;

D.1.4. Kernel Calls-related Data Structures

Listing D.4: Kernel Calls-related Data Structures.

struct mrt_rqst_s {
 int p_nr; /* request destination number */
 pid_t pid; /* request destination PID */
 mrt_msg_t *msg; /* Message to be sent */
 lcounter_t timeout; /* rqst timeout in ticks */
 };
typedef struct mrt_rqst_s mrt_rqst_t;

struct mrt_rply_s {
 int p_nr; /* request destination number */
 pid_t pid; /* request destination PID */
 mrt_msg_t *msg; /* Message to be sent
 */
 };
typedef struct mrt_rply_s mrt_rply_t;
typedef struct mrt_rply_s mrt_sign_t;

struct mrt_rcv_s {
 int p_nr; /* requested source proc number */
 pid_t pid; /* requested source proc PID */
 mrt_msg_t *msg; /* pointer to the msg buffer
 */
 mrt_mhdr_t *hdr; /* pointer to the msg header buf*/
 lcounter_t timeout; /* receive timeout in ticks */
 };
typedef struct mrt_rcv_s mrt_rcv_t;

struct mrt_uprq_s {
 int p_nr; /* request destination number */
 pid_t pid; /* request destination PID */
 mrt_msg_t *msg; /* pointer to the buffer for
the msg*/
 int priority; /* message RT priority */
 lcounter_t deadline; /* process deadline */
 lcounter_t laxity; /* process laxity in timer Hz */
 };
typedef struct mrt_uprq_s mrt_uprq_t;

D.1.5. Message-related Data Structures

Listing D.5: Message-related Data Structures.

struct mrt_mhdr_s{
 mrtpid_t src;
 mrtpid_t dst; /* destination process */
 unsigned int mtype; /* what kind of message is it */
 lcounter_t mid; /* message ID */
 scounter_t seqno; /* msg sequence nbr */
 lcounter_t tstamp; /* sent timestamp */
 priority_t priority; /* sender's priority */
 lcounter_t deadline; /* sender's deadline */

 lcounter_t laxity; /* sender's laxity */

 };
typedef struct mrt_mhdr_s mrt_mhdr_t;

union mrt_msg_u {
 mess_1 m_m1;
 mess_2 m_m2;
 mess_3 m_m3;
 mess_4 m_m4;
 mess_5 m_m5;
 mess_6 m_m6;
 mess_7 m_m7;
 } ;

typedef union mrt_msg_u mrt_msg_t;

/* Real-Time Message Structure */
struct mrt_msgd_s {
 mrt_mhdr_t hdr;
 mrt_msg_t m_u;
} ;
typedef struct mrt_msgd_s mrt_msgd_t;

D.2. Kernel-Level Data Structures

The following data structures are used by Kernel-Level programs.

D.2.1. System-wide Data Structures

Listing D.6: System-wide Data Structures.

 struct MRT_sysstat_s {
 lcounter_t scheds; /* schedules counter */
 lcounter_t messages; /* message counter - ID count */
volatile lcounter_t interrupts; /* Interrupt counter */
volatile lcounter_t ticks; /* Less Significative tick counter */
volatile lcounter_t highticks; /* More Significative tick counter */
 lcounter_t idlemax; /* idle maximum value */
 lcounter_t idlelast; /* last counter */
 };
typedef struct MRT_sysstat_s MRT_sysstat_t;

typedef struct {
 /* DON'T MOVE flags FROM THE FIRST POSITION IN THE STRUCT !! */
 unsigned int flags; /* MRT_RTMODE 0x0001 RT processing mode */
 /* MRT_DBG232 0x0002 Flag to allow printf232 */
 /* MRT_LATENCY 0x0004 Flag to allow latency comp. */
 /* MRT_MINIXCLI 0x0008 MINIX virtual IF 1=CLI */
 /* MRT_NEWINT 0x0010 an int has occurs dur int
flush*/
 /* MRT_FLUSHLCK 0x0020 set when MRT_flush_int runs*/
 /* MRT_NOFLUSH 0x0040 to avoid MRT_irq_flush */
 /* MRT_NEEDSCHED 0x0080 to invoke the scheduler */
 /* MRT_RTSCHED 0x0100 The current proc has been */
 /* selected by thge RT scheduler MRT_pick_proc */
 bitmap16_t virtual_PIC; /* Virtual PIC for MINIX */
 lcounter_t PIT_latency; /* PIT latency in Hz between two reads */
 unsigned PIT_latch; /* TIMER_FREQ/MRT_tickrate */
 scounter_t tickrate; /* Real-Time ticks by second */
 scounter_t harmonic; /* tickrate = MRT_sv.harmonic * HZ */

 scounter_t refresh; /* ticks to refresh idlerfsh */
 int MINIX_soft; /* MINIX CLOCK Software interrupt */
 priority_t prtylvl; /* Current syetem priority level */
 lcounter_t idlecount; /* idle loop counter */
 scounter_t idlerfsh; /* idle refresh loop counter */
 MRT_sysstat_ t counter; /* system statistics */
 } MRT_sysval_t;

D.2.2. Interrupt-related Data Structures

Listing D.7: Interrupt-related Data Structures.

struct MRT_irqd_s {
 /*-------------------- STATISTICAL FIELDS ----------------------------*/
 lcounter_t count; /* Interrupt counter */
 scounter_t maxshower; /* Maximun shower value */
 lcounter_t mdl; /* Missed DeadLines */
 lcounter_t timestamp; /* Last Interrupt timestamp */
 lcounter_t maxlat; /* Maximun Interrupt latency in timer hz */
 int reenter; /* maximun reentrancy level */
 /*-------------------- INTERNAL USE FIELDS --------------------------*/
 int irq; /* IRQ number */
 scounter_t harmonic; /* Harmonic when the period was set */
 MRT_vtimer_t *pvt; /* VT assigned for Timer Driven IRQs */
 int flags; /* MRT_ENQUEUED, MRT_TRIGGERED */
 lcounter_t latency; /* Interrupt latency in timer hz */
 scounter_t shower; /* shower counter since last period */
 scounter_t before; /* TIC counter in MRT_IRQ_dispatch */
 struct MRT_irqd_s *next; /* next irq desc in the priority list */
 struct MRT_irqd_s *prev; /* prev irq desc in the priority list */
 /*-------------------- FUNCTIONAL FIELDS ----------------------------*/
 irq_handler_t nrthandler; /* Non real time handler */
 irq_handler_t rthandler; /* real time handler */
 lcounter_t period; /* For Timer Driven period in ticks */
 proc_nbr_t task; /* Real Time task number */
 proc_nbr_t watchdog; /* Interrupt watchdog process */
 priority_t priority; /* RT or NRT priority */
 irq_type_t irqtype; /* MRT_RTIRQ | MRT_TDIRQ | MRT_SOFTIRQ */
 char name[MAXPNAME];/* name of the RT driver */
};
typedef struct MRT_irqd_s MRT_irqd_t;

typedef struct {
 MRT_irqd_t *first; /* Queue head */
 MRT_irqd_t *last; /* Queue tail */
 int inQ; /* nbr of irqs descriptors in queue */
 int pending; /* number of pend irq_d in queue */
 } MRT_irqQ_t;

typedef struct {
 /* DON'T MOVE bitmap FROM THE FIRST POSITION IN THE STRUCT !! */
 bitmap16_t bitmap; /* Priority IRQ bitmap */
 MRT_irqQ_t irqQ[MRT_NR_PRTY];/* IRQs Queues */
 } MRT_iQ_t;

typedef struct {
 MRT_iQ_t iQ;
 bitmap16_t hard_use; /* bitmap of in-use hard interrupts */
 bitmap16_t soft_use; /* bitmap of in-use soft interrupts */
 MRT_irqd_t irqtab[NR_IRQ_VECTORS+NR_IRQ_SOFT];/*IRQ desc table */
 bitmap16_t mask[NR_IRQ_VECTORS];/* PIC masks for each priority */
 } MRT_sysirq_t;

D.2.3. Process-related Data Structures

Listing D.8: Process-related Data Structures.

typedef struct {
 int flags; /* Real Time Flags */
 priority_t priority; /* EFECTIVE Real Time priority */
 priority_t baseprty; /* BASE Real Time priority */
 lcounter_t period; /* period in RT-ticks */
 scounter_t limit; /* maximun number of process scheds */
 lcounter_t deadline; /* process deadline */
 pid_t watchdog; /* Watchdog process */
 } rtattrib_t;

typedef struct {
 lcounter_t scheds; /* number of RT schedules */
 lcounter_t mdl; /* Missed DeadLines */
 lcounter_t timestamp; /* Last schedule timestamp in ticks */
 lcounter_t maxlat; /* Maximun latency in timer Hz */
 lcounter_t minlax; /* Minimun laxity in timer Hz */
 lcounter_t msgsent; /* messages sent by the process */
 lcounter_t msgrcvd; /* messages received by the process */
 } rtstats_t;

struct proc {
 struct stackframe_s p_reg; /* process' registers saved in stack frame */

#if (CHIP == INTEL)
 reg_t p_ldt_sel; /* selector in gdt giving ldt base and limit */
 struct segdesc_s p_ldt[2]; /* local descriptors for code and data */
 /* 2 is LDT_SIZE - avoid include protect.h */
#endif /* (CHIP == INTEL) */

#if (CHIP == M68000)
 reg_t p_splow; /* lowest observed stack value */
 int p_trap; /* trap type (only low byte) */
#if (SHADOWING == 0)
 char *p_crp; /* mmu table pointer (really struct _rpr *) */
#else
 phys_clicks p_shadow; /* set if shadowed process image */
 int align; /* make the struct size a multiple of 4 */
#endif
 int p_nflips; /* statistics */
 char p_physio; /* cannot be (un)shadowed now if set */
#if defined(FPP)
 struct fsave p_fsave; /* FPP state frame and registers */
 int align2; /* make the struct size a multiple of 4 */
#endif
#endif /* (CHIP == M68000) */

 reg_t *p_stguard; /* stack guard word */

 int p_nr; /* number of this process (for fast access) */

 int p_int_blocked; /* nonzero if int msg blocked by busy task */
 int p_int_held; /* nonzero if int msg held by busy syscall */
 struct proc *p_nextheld; /* next in chain of held-up int processes */

 int p_flags; /* P_SLOT_FREE, SENDING, RECEIVING, etc. */
 struct mem_map p_map[NR_SEGS]; /* memory map */
 pid_t p_pid; /* process id passed in from MM */

 clock_t user_time; /* user time in ticks */
 clock_t sys_time; /* sys time in ticks */

 clock_t child_utime; /* cumulative user time of children */
 clock_t child_stime; /* cumulative sys time of children */
 clock_t p_alarm; /* time of next alarm in ticks, or 0 */

 struct proc *p_callerq; /* head of list of procs wishing to send */
 struct proc *p_sendlink; /* link to next proc wishing to send */
 message *p_messbuf; /* pointer to message buffer */
 int p_getfrom; /* from whom does process want to receive? */
 int p_sendto;

 struct proc *p_nextready; /* pointer to next ready process */
 sigset_t p_pending; /* bit map for pending signals */
 unsigned p_pendcount; /* count of pending and unfinished signals */

 char p_name[16]; /* name of the process */

#ifdef MRT
 rtattrib_t rt; /* Real Time Attributes */
 rtstats_t st; /* Real Time Statistics */

 MRT_msgQ_t *pmq; /* Real Time Message Queue */
 MRT_vtimer_t *pvt; /* virtual timer ID for periodic process */

 int getfrom; /* from whom does RT-process want to receive? */
 int sendto; /* to whom does RT-process want to send? */

 mrt_msg_t *pmsg; /* pointer to message buffer */
 mrt_mhdr_t *pmhdr; /* pointer to message header buffer */

 struct proc *pnextrdy; /* next ready process in the priority queue */
 struct proc *pprevrdy; /* previous ready process in the priority queue
*/

#endif /* MRT */

};
typedef struct proc MRT_proc_t;

typedef struct {
 struct proc *first; /* Queue head */
 struct proc *last; /* Queue tail */
 int inQ; /* Current number of process in queue */
 int maxinQ; /* Maximun number of process enqueued */
 } MRT_procL_t;

typedef struct {
 bitmap16_t bitmap; /* bitmap of priority queues */
 MRT_procL_t procL[MRT_NR_PRTY]; /* Array of priority queues */
 } MRT_procQ_t;

typedef struct {
 MRT_procQ_t rdyQ;
 }MRT_sysproc_t;

D.2.4. Message-related Data Structures

Listing D.9: Message-related Data Structures.

/* Real-Time Message Queue Entry */
struct MRT_mqe_s {
 mrt_msgd_t msgd;
 int index;
 MRT_vtimer_t *pvt; /* VT for timeouts */
 struct MRT_mqe_s *next;
 struct MRT_mqe_s *prev;

 };
typedef struct MRT_mqe_s MRT_mqe_t;

struct MRT_mpool_struct {
 MRT_mqe_t mqe[NR_MESSAGES];
 };
typedef struct MRT_mpool_struct MRT_mpool_t;

typedef struct {
 bitmap16_t bitmap;
 MRT_mqe_t *first[MRT_NR_PRTY];/* pointer to the first msgd */
 MRT_mqe_t *last[MRT_NR_PRTY]; /* pointer to the last msgd */
 } MRT_mQ_t;

/* Real-Time Message Queue */
struct MRT_msgq_s {
 int index; /* message queue ID (for quick search) */
 int size; /* message queue size */
 int flags; /* message queue policy flags */
 int inQ; /* # messages enqueued */
 int maxinQ; /* maximun # of messages enqueued */
 int owner; /* msg queue owner */
 long delivered; /* total # of msgs delivered */
 long enqueued; /* total # of msgs enqueued */
 MRT_vtimer_t *pvt; /* VT assigned for Timer Driven IRQs */
 MRT_mQ_t mQ;
};
typedef struct MRT_msgq_s MRT_msgQ_t;

typedef struct {
 MRT_mpool_t mpool; /* message pool */
 MRT_msgQ_t mfreeQ; /* free message list */
 MRT_msgQ_t msgQ[NR_MSGQ]; /* message queues */
 } MRT_sysmsg_t;

GLOSARY

Context The minimum information that is needed in order to save a

currently executing process so that it can be resumed.

Context switching The process of saving and restoring sufficient information

for a Real-Time process so that it can be resumed after

being interrupted.

CPU Central Processing Unit.

CPU utilization A measure of the percentage of non Idle processing.

Critical region/section Code that interacts with a serially reusable resource.

Deadline A deadline is a point in time at which some operation must

be completed.

Deadline Monotonic Scheduling Scheduling policy in Real-Time systems that meets a

periodic process's deadline that does not equal its period.

Deadlock A catastrophic situation that can arise when processes are

competing forthe same set of two or more serially reusable

resources.

Default The value or status that is assumed unless otherwise

specified.

Device Driver A program that translate Operating System mandated

function calls into device specific calls

Direct Memory Access (DMA) A scheme in which access to the computer's memory is

afforded to other devices in the system without the

intervention of the CPU.

Dynamic Real-time Scheduling Algorithm Scheduling algorithm that uses deadlines to assign priorities

to processes throughout execution

Earliest-Deadline-First (EDF) Scheduling policy that gives a processor to the process with

the closest deadline.

Embedded System A computing machine contained in a device whose

purposeis not to be a computer. For example, the computers

in automobiles and household appliances are embedded

computers. Embedded computers use embedded software,

which integrates an operating system with specific drivers

and application software. Their design often requires special

software-hardware codesign methods for speed, low power,

low cost, high testability, or other special requirements.

Event Any occurrence that results in a change in the state of a

system.

Exception Error or other special condition that arises during program

execution.

Exception handler Code used to process exceptions.

First-In-First-Out (FIFO) Nonpreemptive scheduling policy that dispatches processes

according to their arrival time in the ready queue

Hard Real-Time Scheduling Scheduling policy that ensures processes meet their

deadlines.

Hard Real-Time System A Real-Time system in which missing even one deadline

results in system failure.

Host A computer that is the one responsible for performing a

certain computation or function.

Input and Output (I/O) Input/output, or I/O, is the collection of interfaces that

different functional units (sub-systems) of an information

processing system use to communicate with each other, or

the signals (information) sent through those interfaces.

Interprocess Communications (IPC) IPC is a set of techniques for the exchange of data between

two or more threads in one or more processes.

Interrupt An input to a processor that signals the occurrence of an

asynchronous event. The processor's response to an

interrupt is to save the current machine state and execute a

predefined subprogram. The subprogram restores the

machine state on exit and the processor continues in the

original program.

Interrupt Controller A device that provides additional interrupt handling

capability to a CPU.

Interrupt Handler A predefined subprogram that is executed when an interrupt

occurs. The handler can perform input or output, save data,

update pointers, or notify other processes of the event. The

handler must return to the interrupted program with the

machine state unchanged.

Interrupt Latency The delay between when an interrupt occurs and when

theCPU begins reacting to it.

Interrupt Service Routine (ISR) Piece of code that your processor executes when an external

event, such as a timer, occurs.

Kernel The lowest portion of the operating system that provides for

task scheduling, dispatching, and interprocess

communication.

Kernel Calls A kernel call is the mechanism used by an application

program to request service from the operating system kernel

Latency (process scheduling) Time a Process spends in a system mode before it is

serviced.

Laxity Value determined by subtracting the sum of the current time

and a process's remaining execution time from the process's

deadline. This value decreases as a process nears its

deadline.

Least Slack First It is a scheduling algorithm. It assigns priority based on the

slack time of a process.

Library A set of precompiled routines that may be linked with a

program at compile time or loaded at load time or

dynamically at run time.

Link The portion of the compilation process in which separate

modules are placed together and cross-module references

resolved.

Linker A computer program that takes one or more object files,

assembles them into blocks that are to fit into particular

regions in memory, and resolves all external (and possibly

internal) references to other segments of a program and to

libraries of precompiled program units.

Make Utility to maintain, update, and regenerate related programs

and files. The commands to be executed are placed in a

makefile.

Makefiles Files that contain a collection of commands that allow

groups of programs, object files, libraries, and so on, to

interact. Makefiles are executed by your development

system's make utility.

Message Queue An interprocess communication facility consisting of a

memory location and at least two basic operations

send/receivethat can be performed on it.

Microkernel A microkernel is a type of kernel which consists of defining

a very simple abstraction over the hardware, with a set of

primitives or system calls to implement minimal OS

services such as thread management, address spaces and

interprocess communication

Multitasking The operation by which a microprocessor schedules the

handling of multiple tasks or processes. In generated code,

the number of tasks is equal to the number of sample times

in your model.

Multitasking Operating System An operating system that provides sufficient functionality to

allow multiple programs to run on a single processor so that

the illusion of simultaneity is created. Contrast with

multiprocessing operating system.

Operating System A set of programs that manages the operations of a

computer.It oversees the interaction between the hardware

and the software and providesa set of services to system

users.

Policy Policy is a describing or proscribing set of rules and actions

that encompass an ideal goal

Predictability A system whose timing behavior is always within an

acceptable range

Preempt A condition that occurs when a higher-priority process

interrupts a lower priority priority.

Preemptive Priority System A system that uses preemption schemes instead of round-

robin or first-come, first-served scheduling.

Primitives Primitives are functions provided by the Operating

System/Kernel as basic building blocks

Priority Measure of a process's or thread's importance used to

determine the order and duration of execution.

Priority Inversion A condition that occurs because a lower priority process

executes when a higher priority process is ready to run.

Process The context, consisting of allocated memory, open files,

network connections,in which an operating system places a

running program.

Process Control Block/Process Descriptor An area of memory containing information about the

context of an executing program. Although the process

control block is primarily a software mechanism used by the

operating system for the control of system resources, some

computers use a fixed set of process control blocks as a

mechanism to hold the context of an interrupted process.

Race Condition A situation where multiple processes access and

manipulates hared data with the outcome dependent on the

relative timing of these processes.

Rate-Monotonic Scheduling Is an optimal preemptive static-priority scheduling

algorithm used in Real-Time operating systems

Ready State In the process control block model, the state of those

processes that are ready to run, but are not running.

Real-Time Refers to systems whose correctness depends not only on

outputs bu tthe timeliness of those outputs. Failure to meet

one or more of the deadlines can result in system failure.

Real-Time Computing Support for environments in which response time to an

event must occur within a predetermined amount of time.

Real-time systems may be categorized into hard, firm and,

soft real time.

Real-Time System Computer that processes real-world events as they happen,

under the constraint of a real-time clock, and that can

implement algorithms in dedicated hardware. Examples

include mobile telephones, test and measurement devices,

and avionic and automotive control systems.

Response Time The time between the presentation of a set of inputs to a

software system and the appearance of all the associated

outputs.

Round-Robin Scheduling Scheduling policy that permits each ready process to

execute for at most one quantum per round. After the last

process in the queue has executed once, the scheduler

begins a new round by scheduling the first process in the

queue,

Schedualability Analysis The compile-time prediction of execution-time

performance.

Scheduler The part of the kernel that determines which task will run.

Scheduling policy The way that the scheduler uses to determine which task

runs by following a scheduling algorithm

Semaphore A special variable or object type used for protecting critical

regions.

Server A process used to manage multiple requests to a serially

reusable resource.

Stack A first-in, last-out data structure handle by some CPU

instructions.

Synchronous An operation or operations that synchronize processes.

System Calls A system call is the mechanism used by an application

program to request service from the operating system

System Implementation A phase of the software development life cycle during

which a software product is integrated into its operational

environment.

Task A special kind of process in MINIX that treats with devices

Throughput A measure of the number of operation or transactions per

second that can be processed.

Time-Sharing Time-sharing refers to sharing a computing resource among

many users by multitasking.

Timeslice Amount of time that a process is allowed to run on a

processor before the process is preempted.

Timing Constraint Time period during which a process (or subset of a process's

instructions) must complete

Trap Internal interrupt caused by the execution of a certain

instruction.

User Space Memory not required by the operating system.

Watchdog A process that is scheduled or signaled when something in

the system behavior is wrong.

