USB SUSBSYSTEM FOR MINIX 3

A PROJECT REPORT

Submitted By

ALTHAF K BACKER

In partial fulfillment of the requirementsfor the Degree

of

Bachelor of Technology (B.Tech)

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF ENGINEERING

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI-682022
MARCH 2010

P ' Division of Computer Engineering
School of Engineering

COChlIl University of Science & Technology
Kochi-682022

A2 bt
1 ot
N =\
A b
g
A

CERTIFICATE

Ny
o
Py
- (o
Tt =
G

Catified that thisisa bonafidereoord of theprgiect wark titled

USB Qubsystemfar Minix 3

Doneby

Althaf K Badke

D S T S
SV YD " St Sl

Y %
N
A 5
e

d VIl sarese, Computer Sdence& Engneging, intheyear 2010 in partial
fulfillment o therequirementsfar theaward of Degeed Badhdar of Techndogy
in Computer Sdence& Engnexringd Gochin Universty of Sdence& Tedhndogy

P RN S R ——
PGP Nels N Mol Nl I X
B I B [R
INGR Nl Nald Nl Nl Ny 2

Dr. DavidPaea S Vinod Kunmer P.P
Head of theDivison Prged Guide

2. R ZY. FR R Y S
IR TR J R P IR P
DI %D NS D N

P D
RGN Rl Ne e Re b Re i Nl 2

[
|
[
|
1
al
=
1
y

o s o e e o oo e D U s e D s D S A D D D A A o e A D D A Do D A D D Do e D O P A D A A
e T e ot S S ST A A,]

R P PG VX G TX U PGS P ST ST X GG P Y SR VX GRSV G PR VS G P Gy X G Y G XX G P G PN

ACKNOWLEDGEMENT

At the outset, | thank God almighty for making my endeavor a success. | also express my
gratitude to Dr. David Peter S., Head of Division of Computer Engineering for providing me

with adequate facilities, ways and means by which | was able to complete this project.

| also express my sincere gratitude to my Project Guide Mr. Vinod Kumar PP, for his
constant support and valuable suggestions without which the successful completion of this

project would not have been possible.

| also express my immense pleasure and thankfulness to al the teachers and staff of the
Division of Computer Engineering, CUSAT for their cooperation and support. Last but not the
least, | thank all others, and especially my classmates and my family members who in one way
or another helped me in the successful completion of this work.

Althaf K Backer

ABSTRACT

MINIX 3 a microkernel based, Open Source UNIX clone which is
POSIX compliant, MINIX is a good platform to learn and experiment, the
present implementation that is MINIX 3 lags USB subsystem,which could
ease programming USB device drivers , which other wise could be a tedious
task , understanding the importance the project aims at implementing it on
MINIX 3.

Project focus on three essential parts of a USB Stack

e USB driver (USBD), which is an abstraction of USB and provides
uniform interfaces namely USB driver interface (USBDI) and Host
Controller Driver interface (HCDI). USB class drivers can be written
on top of USBDI which is not part of project.

* Host Controller driver Interface (HCDI) , which is another layer that
abstracts host controller drivers and provides a uniform abstraction to
USBD as well as host controller drivers.

* Implementing host controller driver for well known host controller
Universal Host Controller Interface (UHCI).

* Human Interface Device (HID) Class specific request at USBDI and
dummy USB HID keyboard and mouse drivers.

Entire worked is biased on USB 2.0 specifiation and UHCI revision 1.1.

1

List of Tables
Table 2.0 USB revision and speed 6

111

List of Figures

Figure 1.0 Microkernel Architecture of Minix 3
Figure 1.1 Sample of /etc/system.conf for uhci-hcd
Figure 1.2 Code snippet of a generic driver interface libdriver
Figure 2.0 Conceptual View of USB transaction
Figure 2.1 Conceptual view of frame generation in usb 1.x systems
Figure 2.2 Descriptor hierarchy for a USB device with

two configurations

Figure 2.3 Detailed USB communication flow

1
2
3
10
11

13

(chapters are of USB 2.0) 14

Figure 2.4 Summery of USB communication flow

Figure 3.0 Showing the bandwidth allocation of each type to transfers
Figure 3.1 A typical transfer arrangement of the UHCI transfers
Figure 3.2 UHCI Start of Frame and Frame list pointer relation
Figure 3.3 Frame list pointer and bit roles

Figure 3.4 Queue Head and bit roles

16
18
18
19
20
21

Figure 3.5 Transfer Descriptor , roles of bit fields are explained below 22

Figure 3.6 Transfer queuing and traversal state diagram
Figure 5.0 Conceptual View of the proposed design

Figure 6.0 Minix 3.1.5 on gemu 0.11.1

Figure 6.1 Qemu Monitor

Figure 6.2 local ssh session for compilation purpose

Figure 6.3 Redirecting kernel messages

Figure 6.4 Editing file from minix locally in linux using vim
Figure 7.0 structure that defines message data type

Figure 7.1 Message format 1

Figure 7.2 Message format 2

25
30
33
33
34
34
35
36
37
37

v

Table of Contents
Abstarct
List of Tables
List of Figures
1. Introduction
1.1 Introduction to Minix 3
1.2 Device driver framework of Minix 3
1.3 Why I choose Minix 3 ?
2. Universal Serial Bus
2.1 The Universal Serial Bus
2.2 USB Hardware
2.2.1 Host Controllers
2.2.2 Usb Hubs
2.2.3 Usb Devices
2.3 USB Protocol elements
2.3.1 Transfer Types
2 .3.1.1 Control transfers
2.3.1.2 Interrupt transfers
2.3.1.3 Isochronous tranfers
2.3.1.4 Bulk tranfers
2.3.2 Transactions
2.3.3 Frame Generation
2.3.4 Confiugration and Interfaces
2.3.5 Descriptors
2.3.5.1 Device Descriptor
2.3.5.2 Configuration Descriptor
2.3.5.3 Interface Descriptor

Vi

O O O VW 0O X o0 0w I N &N W RN

e e S S
[\O R O R O R O e

2.3.5.4 Endpoint Descriptor
2.3.5.5 String Descriptor
2.3.5.6 Class Descriptor
2.4 USB communication flow
2.4.1 Device Endpoints
2.4.2 Pipes
3. Universal Host Controller Interface
3.1 Overview
3.2 Data Structures
3.2.1 Frame List and SOF
3.2.2 Frame List Pointer
3.2.3 Queue Head
3.2.4 Transfer Descriptor
3.3 Transfer queuing and Traversal state diagram
3.4 Why UHCI ?
4. Project Scope and Limitations
4.1 Scope
4.2 Limitations
5. Design of the Minix USB Subsystem
5.1 Design
5.1.1 Modularity
5.1.2 Reliability
5.1.3 Scalability
5.1.4 Fault Tolerant
5.2 Brief idea of implementation in minix
5.3 Drawbacks of proposed design

6. Development Environment

12
13
13
13
15
16
17
17
18
18
19
20
21
23
24
26
26
26
28
28
28
29
29
29
31
31
32

6.1 Development Environment
6.2 Setting Up
6.2.1 Qemu 0.11.1 configuration
6.2.2 Mounting Minix file system using sshfs
7. Implementation
7.1 Implementation of USB subsystem
7.2 Minix 3 services
7.3 Subsystem components
7.3.1 USBD
7.3.1.1 Standard USB requests
7.3.1.2 Responsibilities of USBD
7.3.2 USBDI

7.3.2.1 Extending USBDI for HID Request

7.3.3 HCDI and UHCI HCD

32
32
33
34
36
36
36
38
38
40
40
40
42
46

7.3.3.1 Implementation of USBD memory Manager 46

8. Conclusion
Appendix 1
Appendix 2
Appendix 3
Appendix 4

References

48
49
50
56
59
60

Figure 7.3 Message format 3 37

Figure 7.4 Minix message passing primitives used for our purpose 37
Figure 7.5 USBD to HCDI 38
Figure 7.6 HCDI to USBD 39
Figure 7.7 USBD to USBDI 39
Figure 7.7 USBDI to USBD 39
Figure 7.8 Standard USB request that USBD implements 40
Figure 7.9 USBDI interface for device drivers 41

Figure 7.10 Shows how USBDI hides message passing in
usbdi_set config 42
Figure 7.11 HID request implementation and interrupt request 43
Figure 7.12 Showing attach / detach of HID keyboard
device along scanscodes 43
Figure 7.13 Descriptors of HID keyboard that is read by USBD 44
Figure 7.15 Descriptors of HID keyboard that is read by USBD 45
Figure 7.17 Methods and data structures of USBD 46

USB Subsystem For Minix 3

CHAPTER 1

Introduction

In this and the next chapter, I give an overview towards important
foundations for my project. First i give a brief idea about Minix 3 and then a small

introduction to driver framework ,further I explain why Minix 3 was chosen.

1.1 Introduction to Minix 3

Minix 3 is an open source ,POSIX complaint full multiuser,
multiprogramming and highly fault tolerant microkernel operating system designed to be
reliable and flexible see Figure 1.0, following the microkernel approach entire operating
system is divided into separate user mode process well insulated from each other ,unlike
monolithic kernel the device drivers runs as separate process at user space ,which
contributes towards the reliable and robust nature of minix. When a driver crashes its is

gracefully replaced by a new one without any user intervention.

r
(UserProcesses] {Shell } | Make} [User] { } [Other]
“LHJ:::_, = {Server Processes} { File] | PM J [Reincj [] [Other}
[Device Processes] [Disk] [Y J [Net] { Print] [OtherJ
L
Kernel
Mode *’lr [Kernel] [Clock task } [System task]

Figure 1.0 Microkernel Architecture of Minix 3

Division Of Computer Science School of Engineering 1

USB Subsystem For Minix 3

1.2 Device driver framework of Minix 3

Device drivers for minix are programmed in C language , so one should be
good enough with C and should have good understand of device they are going to deal
with ,there is a special process called Reincarnation Server (RS) which keeps the driver
alive and check its status periodically. In Minix device drivers are separate programs
which send and receive message to communicate with the other operating system
components.. Device drivers, like any other program, may contain bugs and could crash
at any point in time. The Reincarnation server will attempt to restart device drivers when
it notices they are abruptly killed by the kernel due to a crash. The Reincarnation Server
sends keep-a-live messages to each running device driver on the system periodically, to

ensure they are still responsible and not i.e. stuck in an infinite loop.

Each device driver typically only needs to access one real hardware device,
and uses a few functions provided by Minix, these details are put up into /etc/system.conf

one such example is given in fig 1.1.

Hriver uhci-hcd

{

io 78:2;
system

UMAP # 14
IRQCTL # 19
DEVIO #21
SETALARM # 24
TIMES # 25
GETINFD # 206
SAFECOPYFROM # 31
SAFECOPYTO # 32
SETGRANT # 34
PROFBUF # 38
SYSCTL

pci device 8086/7020;
ipc
SYSTEM PM RS LOG TTY DS WM VFS IPC
pci usbhd

uid @;
F

Figure 1.1 Sample of /etc/system.conf for uhci-hcd

Division Of Computer Science School of Engineering 2

USB Subsystem For Minix 3

The main() of the driver is an infinite loop waiting for events ,one such event is the ping
from RS ,when a driver receive this message it is suppose to notify RS that it is alive ,
other event for which the driver is waiting for is context specific see Figure 1.2 sample

from libdriver.

/* Here is the mdin loop of the disk task. It waits for a message, carries
* it put, and sends a reply.
*d

while (TRUE) {

/* Any gueued messages? Oldest are at the head. =/
if(gueue head) {
mg_t *mq;
mg = queue head;
memcpy (&mess, &mg-=mg mess, sizeof(mess));
gueue head = gueue head->mg next;
mg_free(mg);
} else {
int s;
/* Wait for a reguest to read or write a disk block. */
if ((s=receive(ANY, &mess)) != 0K)
panic((®*dp->dr_name) (), eivi i 83
¥
device caller = mess.m_source;

proc_nr = mess.I0 ENDPT;

/* Now carry out the work. */
if (is notify(mess.m type)) {
switch (ENDPOINT P{mess.m_source)) {
case HARDWARE:
/* leftover interrupt or expired timer. */
if(dp-=dr_hw int) {
(*dp-=dr_hw_int) (dp, &mess);

1
break:;

case PM_PROC NR:
if (getsigset(&set) != 8) break;
(*dp->dr_signal)(dp, &set);
break;

case SYSTEM:
set = mess.NOTIFY ARG;
(*dp-=dr_signal) (dp, &set);
break;

case CLOCK:

Figure 1.2 Code snippet of a generic driver interface libdriver

There is utility called 'service' meant for handling the drivers and servers
with service utility we can bring 'up' ,'down', 'refresh’, 'restart', 'rescue' and 'shutdown'
drivers there are much more advanced features like setting period at which the RS should
check the status. This is just a brief idea of how drivers in minix work, explaining entire

driver framework is beyond the scope.

Division Of Computer Science School of Engineering 3

USB Subsystem For Minix 3

1.3 Minix 3

One solid reason is educational purpose, Minix is a research operating
system ,however its is quite useful enough for a computer science student. Minix goal, to
teach operating system theory in a practical way is still continued to date, further the
microkernel architecture can be quite interesting to play with and coding device drivers
for them can help understand the microkernel architecture in much depth. I found USB
protocol to be quite interesting and on understanding that Minix lags one it was a perfect
combination for a major project. More than anything else the open source nature of

Minix is another choosing factor.

Division Of Computer Science School of Engineering 4

USB Subsystem For Minix 3

CHAPTER 2

Universal Serial Bus

In this chapter I present the basics of the universal serial bus (usb) and
how the usb protocol is defined,it covers the chapter 4 and 5 of [1], this excellent

introduction for USB is taken from [4].

2.1 The Universal Serial Bus

The interfaces used in the original ibm pc designs of the early 1980s had a number
of problems. For example, there existed a wide diversity of connectors. Furthermore,
most of these interfaces were not hot pluggable. Limited system resources, which had to
be shared by more and more devices, appeared to be another problem. One approach to
handle these problems is usb, whose specification was first published in early 1996 by a

consortium of it companies including IBM and Microsoft .

To overcome the shortcomings of traditional peripheral interfaces, the designers of usb

were striving for the following design goals:

* A single connector type for all pc peripherals,

* Hot plug support,

* Preventing system resource conflicts,

* Low cost for system and peripheral implementations,
» Automatic detection and configuration of peripherals,
* Support for legacy hardware and software, and

* Low-power implementation.

usb can be used to connect a wide variety of peripheral devices ranging from input
devices like keyboards and mice to more complex hardware like video frame grabbers

and mass storage devices. The first revision of usb introduced two transfer speeds,

Division Of Computer Science School of Engineering 5

USB Subsystem For Minix 3

namely low speed using a transfer rate of 1.5 Mb/s and full speed using 12 Mb/s. In the
year 2000, a second revision of usb was published, which included high speed transfer at
a data rate of 480 Mb/s. Nevertheless, usb 2.0 is fully backward compatible to usb 1.x,
see table 2.0.

It is to be expected that the third major revision of usb ie usb 3.0 will also
be fully backward compatible to previous revisions. Additionally, it will offer a yet higher
transfer speed called super speed. Devices supporting this transfer speed will be able to
transfer data at rates of up to of 4.8 Gb/s. USB uses twisted-pair data wires for data
transmission. Additionally, there are two more wires in a usb cable providing a supply

voltage of 5 V to a usb device. A good overview of usb can be found [2] and [3].

Name Speed Available since
Low Speed 1.5Mby/s

USB 1.x

Full Speed 12 Mbys

High Speed 480Mbjs USB2.0

Super Speed 4.8Gb/s USB 3.0 (planned)

Table 2.0 USB revision and speed

2.2 USB Hardware
The hardware part of the usb mainly consists of three elements. These
include the host controller with its root hub, usb hubs, and usb devices and are explained

in the following.

2.2.1 Host Controllers

USB is a single master bus, which is managed by a single host controller
(hc).Thus, all communication on the bus is controlled by the hc. The he’s task is to
perform transactions that have been scheduled by the hc driver. For that,the hc’s counter
part, the hc driver, generates transfer descriptors (td) and enqueues them for execution by
the hc into the he’s transfer queue. A hc always comes with a root hub to provide usb
ports for one or more usb devices. The amount of usb ports can be increased by using usb

hubs.

Division Of Computer Science School of Engineering 6

USB Subsystem For Minix 3

There are three important hc designs:

Universal Host Controller Interface (UHCI) This design was developed by Intel
[Int96] and fulfills the usb 1.1 specification. It is mainly used in products by Intel and via
Technologies. In comparison to other hc designs, more work is done in software, in order

to reduce hardware complexity.

Open Host Controller Interface (OHCI) This design, developed by Compaq, Microsoft,
and National Semiconductors [CMN99], also supports the usb specification up to revision
1.1. In contrast to the uhci design, ohci-type hcs do more work in hardware, which allows

to provide a more abstract interface for driver developers.

Enhanced Host Controller Interface (EHCI) The ehci design, which supports the usb
2.0 Specification was created by Intel [Int02]. Usually, an ehci hc is equipped with one or
more companion hcs for backward compatibility. Thus, if a usb 1.x Device is connected
to a port of the root hub of an ehci hc, this port will be forwarded to the corresponding
companion hc. However, it is also possible to ensure backward compatibility without a

companion hc. For that the hc’s root hub has to support so called split transactions.

2.2.2 USB Hubs

Hubs can be used, to extend the number of available usb ports. They can
be integrated into devices like keyboards and monitors or can be implemented as
standalone devices. Furthermore, usb hubs can be bus-powered or self- powered. If a usb
device is bus-powered, it does not need an external power source and will be powered by
the bus. Because a usb port only provides a limited amount of power (500 mA at 5 V), a
bus-powered hub may only provide up to four usb ports. Otherwise, the hub has to be
self-powered. usb hubs play an important role in usb’s hot-plugging mechanism, because

they are also used to detect connection changes on the bus.

Division Of Computer Science School of Engineering 7

USB Subsystem For Minix 3

2.2.3 USB Devices

USB devices provide the actual functionality to the user. Their attributes
are stored in descriptors. Whenever a new device is attached to the bus, the hc driver first
reads these descriptors. Afterward, the hc driver uses the information contained in the
descriptors to find a corresponding usb device driver for this device. This device driver
can also use the device’s descriptors to obtain more information on the device. usb
devices can provide one or more configurations, each of which can contain one or more
interfaces. This interfaces have a default setting and may contain one or more alternate
settings. These settings in turn can contain one or more numbered endpoints, which can
be understood as source or sink of data. Each of these endpoints can either be ingoing,
which means information flows from the device to the hc or, outgoing. Again, like hubs,
which are actually normal usb devices, usb devices can be bus-powered or self-powered,

whereas, if a device is bus-powered, it may not consume more current than 500 mA.

2.3 USB Protocol elements

In this section I give an overview of how communication works on usb.
This overview includes the existing transfer types and their purpose, how usb transactions
are executed by the hc, and how the usb time-base, called frames, is generated. Afterward,
I describe how usb devices present themselves to the usb software stack with the help of

descriptors.

2.3.1 Transfer Types
USB provides the following transfer types, not all of which need to be

implemented by usb devices.

2.3.1.1 Control Transfer

Control transfer is used to configure a usb device and to control aspects of
its operation. This transfer type is mandatory for usb devices. Every usb device must
implement at least one control endpoint, which is endpoint zero. hc drivers and usb

device drivers use special request to endpoint zero for getting information on a device an

Division Of Computer Science School of Engineering 8

USB Subsystem For Minix 3

managing it.
2.3.1.2 Interrupt Transfer

This transfer type is used to periodically poll usb devices for data that
needs to be transmitted. For that, the usb device driver specifies an interval, in which the
usb device should be polled. This polling is done by the he, and the usb device driver is
not informed until data is available. The minimal polling interval for low speed devices is
10 ms, for full speed devices it is 1 ms, and for high speed devices it is 125 ps. Interrupt

transfer is often used for input devices, like keyboards and mice.

2.3.1.3 Isochronous Transfer

Isochronous transfer is used whenever guaranteed bandwidth is
needed, like in video frame grabbers or audio interfaces. Only full and high speed devices
support this transfer type. The default setting of an interface may not include an
isochronous endpoint. Furthermore, when an alternate setting of an interface is activated
that includes an isochronous endpoint, the hc driver reserves the bandwidth needed,
according to the USB specification.1 . If the required bandwidth is not available the
activation of the alternate interface setting fails. Up to 90 percent of the bus bandwidth

are reserved for periodical transfer types, like isochronous and interrupt transfer.

2.3.1.4 Bulk Transfer
Bulk transfer is used when there is no need of guaranteed
bandwidth. It uses the remaining bandwidth of the bus, and is, for example, used for

printers, scanners, and usb storage devices.

2.3.2 Transactions

A usb device driver’s request to send or receive data on the bus is
represented by an input—output request package (irp). Whenever a device driver submits
an irp to the usb subsystem, the hc driver translates the irp into one or more usb
transactions. These usb transactions, in turn, are represented by transfer descriptors (tds)

and are scheduled by the hc driver.

Division Of Computer Science School of Engineering 9

USB Subsystem For Minix 3

A td contains all the information needed by the hc to perform a transaction, including:

* The address for this transaction, consisting of the device’s address on the bus,
and the endpoint id,

* The transaction type (e.g., ingoing/outgoing),

* The transfer speed,

* The number of bytes to be transfered, and

* The memory location of the transfer buffer, containing the actual data.

The hc driver enqueues the tds into a linked list, which is called the frame list. During a
certain interval (usb 1.x: 1 ms, usb 2.0: 125 us), called a frame, the hc fetches the tds
belonging to the current frame and executes them. Fig 2.1 illustrates this process: On the
left side, we can see the system’s memory containing several transfer descriptors, and a
memory location where data of the usb mouse should be stored. On the right side, there is
a simple wusb setup, including a hc and two usb devices attached to it, a mouse and
printer. As the first step of this usb transaction, the hc grabs the transfer descriptor.
Second, the hc generates the ingoing (i.e. reading) transaction, described in this td. This
transactions is addressed to the usb mouse. Although the transaction is received by all
devices attached to the same usb port as the mouse, only the mouse is allowed to send a
response, which it does in the third step. In the end, the host controller transfers the data

sent by the mouse to memory.

1 Host Controller
/ B =]
|2

Transaction 1

Transfer Transaction 2 2 l T 3
Descriptors 4

Transaction 3

Mouse Data

1. HC fetches TD

2. HC generates |N transaction

3. Mouse returns data

Memory 4. HC transfers mouse data to memory

Figure 2.0 Conceptual View of USB transaction

Division Of Computer Science School of Engineering 10

USB Subsystem For Minix 3

2.3.3 Frame Generation

The hc is responsible to partition time into usb frames.To generate the usb
frames, a clock and a counter are used. Each clock tick increments the counter. When this
counter reaches its limit, the frame number counter increments. Because in usb 1.x
systems a frame lasts 1ms, while the transfer rate is 12 Mb/s, a 12 MHz clock and a
counter that counts up to 12 000 are used. According to the higher transfer rate of 480
Mb/s, and the frame interval of 125 ps, in usb 2.0, a 480 MHz clock and a counter with a
limit of 60 000 is used for frame generation. This setup is illustrated in Figure 2.1. On the
left side we can see a 12 MHz clock incrementing a counter, whose carry output

increments the frame number counter.

Counter
12000

- » Frame Pointer n

Y
Frame Number
Counter

F.-List Base Adr. Reg. | F.-Nr.

Frame Pointer 3

Frame Pointer 2

Frame Pointer 1

Frame Pointer 0

Figure 2.1 Conceptual view of frame generation in usb 1.x systems

As we can further see, the frame number is used as offset, to generate the
address of the next frame pointer, which points to a list, containing the transfer
descriptors for the current time frame. The base for this address is to be set in

the he’s frame list base register by the hc driver.

2.3.4 Configuration and Interfaces

usb devices have two levels of configuration: configurations and
interfaces. Configurations can, for example, be used to support a low power mode in a
high power device. So, if no external power supply is attached to the device, the low
power configuration can be used, only supporting a subset of the functionality. Otherwise

the high power configuration can be used, then offering full functionality. Interfaces, on

Division Of Computer Science School of Engineering 11

USB Subsystem For Minix 3

the other hand, are used to access different functionality of a device, for instance, the
video function of a web camera and the built-in microphone. Furthermore, the different

interfaces of a device can be driven by different drivers.

2.3.5 Descriptors
As mentioned before, usb devices use descriptors to present their features

to software. These descriptors include:

2.3.5.1 Device Descriptor

Every device provides one descriptor containing information on the device
such as the manufacturer, the usb device id and whether it is a full or a low-speed device.
Furthermore, it contains information on the number of and references to the configuration

descriptors this device contains.

2.3.5.2 Configuration Descriptor

A usb device provides one configuration descriptor per configuration it
supports. These descriptors contain information on the number of interfaces provided by
the corresponding configuration. Further, they include references to the corresponding

interface descriptors.

2.3.5.3 Interface Descriptor

The interface descriptors hold general information on the corresponding
interface, and on the number of endpoints included in an interface. An interface may
include up to 15 endpoints, and further may include alternative settings. Alternative
settings can for example be used to switch between different transfer bandwidths or to

enable and disable endpoints.

2.3.5.4 Endpoint Descriptor
An interface may contain multiple endpoint descriptors, each of which
describes one endpoint, and this endpoint’s attributes. These descriptors contain

information on the transfer types supported by this endpoint (e.g., isochronous,

Division Of Computer Science School of Engineering 12

USB Subsystem For Minix 3

control, .. .), and on the maximum transfer rate.
2.3.5.5 String Descriptor

String descriptors may be defined for the whole device, for certain
configurations, and interfaces. They contain human-readable information about the

corresponding device, configuration, or interface.

2.3.5.6 Class Descriptor

If a device is implementing a usb device class, it may contain class

descriptors containing class-specific information used by the usb class device driver.

Manuf. String Prod. String Ser.-Mr. String
Desc. Desc. Desc.

Conf. String
Desc.

Caonf. String Configuration
Desc. Descriptor

Interface
Descriptar

. Inti. String Interface [N Intf. String
Desc. Descriptor Desc.

Interface
Descriptor

Interface
Descriptar

Intf. String
Desc.

Intf. String
Desc.

Endpoint
Descriptor

Endpaolnt
Descriptor

Endpoint
Descriptor

Erid point
Descriptor

Endpoint
Descriptor

Endpolnt
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Figure 2.2 Descriptor hierarchy for a USB device with two configurations

2.4 USB communication flow

The USB provides a communication service between software on the host
and its USB Functions (Devices) . Functions can have different communication flow
requirements for different client-to-function interactions. Each communication flow
makes use of some bus access to accomplish communication between client and function.
Each communication flow is terminated at an endpoint on a device. Device endpoints are
used to identify aspects of each communication flow. Figure 5.3 is detailed. Figure 2.4

gives the summery of usb communication flow.

Division Of Computer Science School of Engineering 13

USB Subsystem For Minix 3

Host Interconnect Physical Device
BRI NN EETEN NI EEENEEEERESEEEEREEEE | --
[~ -
= L i Function
Client SW " = >
. . H Interface x a collection of
manages an interface . ’ H interfaces
b S~ |
: Pipe Bundie
E to an inlerfface E T
| J& . : " I T
i 1
¥ o H
Buffers L‘ No USB C i Interface- No USB
J Format - 1 : specific || | Format
Ve | : Ve
. USE Logical
X . Device
USB System SW s H Endpoint
: ES > == Zero a collection of
manages devices : Default Pipe endpaints
* to Endpbint Zero E ISB Device
5 x : : Y i " (Chapter9)
: Transfers use H E Data Per | use £
: = Framed-—— BERE : : Endpoint Framed .
Data . H X Data H
USB Host 2 USB Bus | : : i |USBBus i
¢ Interface | : i ! |interface z
(Chapter 10} . Host . H H
1| |controiter| USB Framed H
Data =
SIE SIE :
T ! USB Wire i
.. I O L e e R R R
[i Pipe: rep ion abstraction \ /
between two horizontal entities
Mechanical,
A
‘Qr Data transport mechanism Electrical,
Protocol
¢ USB-relevant format of transported data (Chapter 6, 7, 8)

Figure 2.3 Detailed USB communication flow (chapters are of USB 2.0)

Host Controller Driver (HCD): The software interface between the USB Host
Controller and USB System Software. This interface allows a range of Host Controller
implementations without requiring all host software to be dependent on any particular
implementation. One USB Driver can support different Host Controllers without

requiring specific knowledge of a Host Controller implementation.

USB Driver (USBD): The interface between the USB System Software and the client
software. This interface provides clients with convenient functions for manipulating USB
devices. A USB logical device appears to the USB system as a collection of endpoints.
Endpoints are grouped into endpoint sets that implement an interface. Interfaces are views
to the function. The USB System Software manages the device using the Default Control

Pipe. Client software manages an interface using pipe bundles (associated with an

Division Of Computer Science School of Engineering 14

USB Subsystem For Minix 3

endpoint set). Client software requests that data be moved across the USB between a
buffer on the host and an endpoint on the USB device. The Host Controller (or USB

device, depending on transfer direction) packet sizes the data to move it over the USB.

2.4.1 Device Endpoints

An endpoint is a uniquely identifiable portion of a USB device that is the
terminus of communication flow between the host and device. Each USB logical device
is composed of a collection of independent endpoints. Each logical device has a unique
address assigned by the system at device attachment time. Each endpoint on a device is
given at design time a unique device-determined identifier called the endpoint number.
Each endpoint has a device-determined direction of data flow. The combination of the
device address, endpoint number, and direction allows each endpoint to be uniquely
referenced.

Each endpoint is a simplex connection that supports data flow in one
direction: either input (from device to host) or output (from host to device). An endpoint
has characteristics that determine the type of transfer service required between the

endpoint and the client software. An endpoint describes itself by:

* Bus access frequency/latency requirement

* Bandwidth requirement

* Endpoint number

* Error handling behavior requirements

* Maximum packet size that the endpoint is capable of sending or receiving
* The transfer type for the endpoint

* The direction in which data is transferred between the endpoint and the

host

Endpoints other than those with endpoint number zero are in an unknown state before

being configured and may not be accessed by the host before being configured.

Division Of Computer Science School of Engineering 15

USB Subsystem For Minix 3
2.4.2 Pipes

A USB pipe is an association between an endpoint on a device and
software on the host. Pipes represent the ability to move data between software on the
host via a memory buffer and an endpoint on a device. There are two mutually exclusive
pipe communication modes:

* Stream: Data moving through a pipe has no USB-defined structure

* Message: Data moving through a pipe has some USB-defined structure
The USB does not interpret the content of data it delivers through a pipe. Even though a
message pipe requires that data be structured according to USB definitions, the content of
the data is not interpreted by the USB.
Additionally, pipes have the following associated with them:

* A claim on USB bus access and bandwidth usage.

* A transfer type.

* The associated endpoint’s characteristics, such as directionality and

maximum data payload sizes. The data payload is the data that is carried in

the data field of a data packet within a bus transaction .

Host Client
Software
Buffers
Communication
Flows
. Endpoints
USB Logical Device ‘

Interface

Figure 2.4 Summery of USB communication flow

Division Of Computer Science School of Engineering 16

USB Subsystem For Minix 3

CHAPTER 3

Universal Host Controller Interface

This chapter introduces all data structures needed for a successful
communication between the UHCI host controller and a function as far as they can be
controlled by the host controller driver. All data structures generated and controlled by the
hardware are not object of this chapter,see [5] for more information about UHCI , this

brief introduction about UHCI is taken from [6].

3.1 Overview

As mentioned in chapter 2 the USB specification separates the USB bus
into frames, of length one millisecond (USB 1.x) each and are started by a start of frame
SOF-packet. The structure of different transfer types in such frames (see Figure 3.0) is
given by the UHCI specification [5].After the SOF-packet the isochronous transfers are
sent followed by the interrupt transfers. According to the USB specification , these two
transfer types achieve at most 90 percent of the total bandwidth. After the interrupt
transfers the control transfers follows. At least 10 percent of the bandwidth is reserved for
the control transfers to guarantee that configuration of the attached USB devices can be
assured. The rest of the bandwidth is used for bulk transfers. If there are not enough
transfers the remaining time is spent idle. It is in the responsibility of the host controller
driver to achieve the correct order of the different transfer types. Therefor a data structure
(see Figure 3.1) must be created in main memory.

Interrupt, control and bulk transfers begin with a Queue Header. This data
structure stores control data needed for the correct processing by the hardware. A linked
list consisting of Queue Headers is build, whereas each Queue Header represents a single
transaction. The list of Transfer Descriptors which is linked by each Queue Header
represents the transactions itself. For the isochronous transfer no Queue Headers are used.
Instead all the Transfer Descriptors of all isochronous transfers in this frame are linked

together

Division Of Computer Science School of Engineering 17

USB Subsystem For Minix 3

time -
L
n-1 - Frame n - Frame n+1 - Frame
__.-"’- 1 ms “""-.._.
i =" .'-""" L
- e e -
SOF | Isochronous-Data Interrupt-Data Control-Data Bulk-Data
< . L L.
. T - Ll
max 90% min 10% rest

Figure 3.0 Showing the bandwidth allocation of each type to transfers

Transfer - Descripters Queue - Heads Queue - Heads
- Isachrenous o Jdnterrupt Control and Bulk -
- Foailin) il) L
Frame - Pointer [Q|T » TD D TD » QH » QH » QH »| QH
TD TD TD TD
Frame - Pointer |Q|T—>» -))
Frame - Pointer |[Q|Tp—3 - ™ TD 1]
T: Terminated (valid or invalid Painter) TD
Q: Transfer - Descriptor or Queue - Head

—Link - Pointer “~___Element - Link - Pointer

Figure 3.1 A typical transfer arrangement of the UHCI transfers

3.2 Data Structures
3.2.1 Frame List and SOF

During initialization, a list of 1024 Frame List Pointers has to be allocated
in main memory. Each Frame List Pointer stores the start address of the data structures
that represent the data which will be transferred during a frame (see Figure 3.1). The
current entry in the frame list is determined by the Start-Of-Frame counter (see Figure
3.2) which is responsible for generating the Start-Of-Frame packet each millisecond
(signals the beginning of a new frame). It gets decremented by a 12 MHz clock until it

reaches zero, taking into account the Start-Of-Frame modify register which provides an

Division Of Computer Science School of Engineering 18

USB Subsystem For Minix 3
adjusted starting value for the Start-Of-Frame counter. Every time the Start-Of-Frame

counter is decremented to zero a new frame is generated and there for the frame counter
gets incremented. The frame list base address register contains the base address of the
whole frame list. The combination of the frame counter and the frame list base register

results in the address of the current processed frame list pointer.

Sysiem Memory

Pointer cnti]|1023
.

Frame List Index (A[11:2]) . Eigia
.

(Increments Each Frame Time B "
Pointer {cntl List

Pointer |cntl

—p Pointer lentl] O

Heost Controller Lower
1 msec 10 Bits

1% SOF Counter ’i.{ Frame Counter

A
7 Bits " 11 Bits

SOF Modify Frame Number

Register

Begister

Frame List Base
20 Bits Address (A[31:12])

Frame List Base

Address Register

765003

Figure 3.2 UHCI Start of Frame and Frame list pointer relation
3.2.2 Frame List Pointer

A Frame List Pointer (see Figure 3.3) consists of three fields. The address
field stores the memory address of the first data object that will be processed by the
hardware during this frame. This must be a Transfer Descriptor or a Queue Head. To
distinguish this two kinds of data structures the Q-field of the Frame List Pointer is used.
It is set if the following data structure is the Queue Head. If the host controller driver was
not able to generate a correct frame data structure before it is processed by the hardware
or if there are no transactions left, the frame gets marked as invalid, by the host controller
driver by setting the T- field to zero. This causes the hardware to skip this frame and to
immediately process the next frame. All transactions, beside the isochronous transfers, are
realized as a linked list of Queue Heads (each Queue Head symbolizes one transaction) in

the main memory. The individually parts of each transaction are attached as a linked list

Division Of Computer Science School of Engineering 19

USB Subsystem For Minix 3

of Transfer Descriptors to each Queue Head. This is true for interrupt, control and bulk

transfers. If there are no isochronous transfers during a frame the Frame List Pointer

would have to point to next Queue Head of one of the other transfer-types.

3 4 3 2 1 0

I Frama List Paintar] 4] }0 IO\ T | 00-03h

I:l Heast Controllar ReadWrite I_] Heast Contrallar Read Only

Bit | Description

314 Frame List Pointer (FLP). This field contains the address of the first data object to be processed in
the frame and corresponds to memaory address signals [31:4), respectively.

3.2 Reserved. These bits must be written as Os.

1 QHTD Select (Q). 1=0H. 0=TD. This kit indicates to the hardware whether the item referenced by
the link peinter is a TD or a QH. This allows the Host Controller to perform the proper type of
processing on the item after it is tetched.

0 Terminate (T). 1=Empty Frame (pointer is invalid). 0=Pointer is valid (points toa QH or TD). This bit
indicates to the Host Controller whether the schedule for this frame has valid entries in it.

Figure 3.3 Frame list pointer and bit roles

3.2.3 Queue Head

Queue Heads as shown in Figure 3.4, are used to separate the individual
transactions from each other. They consist of two main parts a queue head part and a
queue element part. First, the queue head field is used to generate the linked list of the
Queue Headers. The end of this list is signaled to the hardware by marking the memory
address in the address field invalid through the T- field. This corresponds to the way a
Frame List Pointer gets marked inactive. The Q- field which is also available in the queue
head region must always be set to one, because after a control, interrupt or bulk transfer is
reached transfer types that make use of Queue Head will follow. The only transfer type
which does not make use of Queue Headers is the isochronous transfer and these transfers
have to be always at the beginning of a frame.

The second part of a Queue Head is used to point to the next Transfer
Descriptor, that belongs to this transfer. After processing this Transfer Descriptor, the
hardware updates this part of the Queue Header to point to the next Transfer Descriptor of

this transfer. This part of the Queue Head is structured the same way as the queue head

Division Of Computer Science School of Engineering 20

USB Subsystem For Minix 3

part, but since the queue element part only points to next Transfer Descriptor its Q- field

must always be zero

31 4 3 2 1 0
| Queue Head Link Pointer I 0 | 0 ‘ Q | T | 00-03h
| Queue Element Link Pointer | 0 | R ‘ Ql T | 04-07h

D Host Coniroller Read/Write D Host Controller Read Only

765008

Bit Description

314 Queue Head Link Pointer (QHLP). This field contains the address of the next data object to be
processed in the horizontal list and corresponds to memory address signals [31:4], respectively.

3:2 Reserved. These bits must be written as 0s.

1 QH/TD Select (Q). 1=QH. 0=TD. This bit indicates to the hardware whether the item referenced by
the link pointer is another TD or a QH. This allows the Host Controller to perform the proper type of
processing on the item after it is fetched.

0 Terminate (T). 1=Last QH (pointer is invalid). 0=Pointer is valid (points to a QH or TD). This bit
indicates fo the Host Controller that this is the last QH in the schedule. If there are active TDs in this
queue, they are the last to be executed in this frame.

Bit Description

31:4 Queue Element Link Pointer (QELP). This field contains the address of the next TD or QH to be
processed in this queue and corresponds to memory address signals [31:4], respectively.

3 Reserved. This bit must be 0.

2 Reserved. This bit has no impact on operation. It may vary simply as a side effect of the Queue
Element pointer update.

i QH/TD Select (Q). 1=QH. 0=TD. This bit indicates to the hardware whether the item referenced by
the link pointer is another TD or a QH. This allows the Host Gontroller to do the proper type of
processing on the item after it is fetched. For entries in a queue, this bit is typically set to 0.

0 Terminate (T). 1=Terminate (No valid queue entries). This bit indicates to the Host Controller that
there are no valid TDs in this queue. When HCD has new queue entries it overwrites this value with
a new TD pointer to the queue entry.

Figure 3.4 Queue Head and bit roles

3.2.4 Transfer Descriptor

Transfer Descriptors (Figure 3.5) represent a transaction between the host
controller and a function. They can be separated into four parts. The first part, the so
called link pointer, is used to generate a linked list of several Transfer Descriptors which
belong together. Therefor it consists of an address field and a Q-field that determines the
type of the element the address-field points to. If a Transfer Descriptor is the last one in a
interrupt, control or bulk transfer transaction the address- field gets marked invalid by

setting the T- field. Beside these fields there is the V- field. This field determines the next

Division Of Computer Science School of Engineering 21

USB Subsystem For Minix 3

Transfer Descriptor, after processing the current Transfer Descriptor and updating the
corresponding Queue Header, that will be processed whether of the current transaction
(depth-first). Or whether the next available Queue Header is processed instead (breath-
first).

31 30,29,28 27,26,25,24.23 21,20,19,18 16,1514 1110 8,7 4 3 2 1 0
| Link Pointer ‘ 0 ‘Vf l QI T ‘ 00-03h
T T 11 T 1 1] -
‘ R |5PD‘ CEERH |'—S 150 |oc| Status R | ActLen ‘ 04-07h
T | |
‘ MaxLen | R ‘ D ‘ EndPt ‘ Device Address ‘ PID ‘ 08-0Bh
| Buffer Pointer ‘ 0C-0Fh

R=Reserved
D Host Controller Read/Write D Host Controller Read Only

T65007

Fig 3.5 Transfer Descriptor , roles of bit fields are explained below

The next part is the so called control section. It gives the hardware
additional information about the function, with whom the communication will take place
(if the function is a low-speed device the LS-field has to be set), and about how to react
on certain events during the communication. The host controller driver can be told after
how many errors the transaction gets marked as invalid through the ERR- field. Via the
IOC- field, whether there should be an interrupt at the end of the whole frame in which
this Transfer Descriptor was processed or not, can be controlled. The hardware can
determine through the ISO-field if the current Transfer Descriptor is part of an
isochronous transfer or not. During processing the host controller gives the host controller
driver feedback about the status of the transfer through the STATUS-field. This field tells
the host controller driver if the host controller has already started processing the current
Transfer Descriptor, or if the processing was stopped or canceled because of errors that
occurred. Beside the STATUS-field the ACTLEN- field tells the host controller driver

how many bytes of the Transfer Descriptor have already been processed by the hardware.

Division Of Computer Science School of Engineering 22

USB Subsystem For Minix 3

The third part is called token section which stores the total number of bytes
that must be processed by the hardware in the MAXLEN-field. The D- field determines if
the so called toggle bit must be set or not. The toggle mechanism is used as an alternating
bit sequence of one bit to synchronize the data transfer between host and a pipe on
function. The pipe is clearly identified through the function id (which is stored in the
DEVICE ADDRESS- field) and the endpoint number (ENDPT- field) on this function.
The PID- field specification the type of transfer that must be generated by the controller
for this Transfer Descriptor. Possible values are IN (this is a transaction which moves data
from a function to the host controller), OUT (moves data from the host controller to the
function) and SETUP (with a SETUP-transfer the configuration of a function can be

changed by the host controller or by other higher layers).

The last part of a Transfer Descriptor only contains the starting-address of
the memory block that must be transfer to the function or that stores the data, sent from
the function to the host, after the transfer has been successfully determined. Beside these
four parts the USB specification reserves another 32 bytes in the Transfer Descriptor. This
part is not used by the host controller and can therefor be used by the host controller

driver

3.3 Transfer queuing and Traversal state diagram

The hardware begins the execution of a frame by determining the current
Frame List Pointer through the Start-Of-Frame Register and broadcasting a Start-Of-
Frame packet to all connected functions signaling that the previous frame has ended.
Mean while the hardware analyzes the Frame List Pointer. If it is not valid (T-field of the
Frame List Pointer is set) the hardware idles one millisecond and starts all over again.But,
if the Frame List Pointer is valid the hardware checks whether the referenced data
structure is a Transfer Descriptor or a Queue Header and begins processing. If the
referenced data structure is a Queue Header the hardware determines whether to follow
the Transfer Descriptors striping through all transfers of this frame (in the UHCI

specification this is called horizontal context) or along the current transfer (the so called

Division Of Computer Science School of Engineering 23

USB Subsystem For Minix 3

vertical context) by analyzing the V{- field of the Transfer Descriptor referenced by the
Queue Header. After processing this Transfer Descriptor and updating the Queue Head
(the element link pointer points to the next not jet processed Transfer Descriptor of the
transfer) the hardware fetches the next Transfer Descriptor.

In vertical context this is the next Transfer Descriptor of the current
transfer of the current transfer. If the processing context is horizontal, the next Transfer
Descriptor of the following Queue Header is fetched and processed. The vertical context
offers a successive way of processing all the transfers in a frame whereas the horizontal
context offers a concurrent processing model of the frame data. During the processing of
a Transfer Descriptor the hardware transmits the transfer to the function. The ACTLEN-
field of the Transfer Descriptor gets updated during processing the memory. In case of
errors the transfer may be canceled (depending on the ERR-field, defining the number of
errors that may occur without canceling the transfer) and the STATUS-field gets updated
with an error code. If the transfer is not canceled and the end of the Transfer Descriptor is
reached the STATUS-field gets marked as inactive. If the Transfer Descriptor is part of a
isochronous transfer (not Queue Head controlled) the next Transfer Descriptor gets
fetched and processed,because isochronous transfers do not make use of Queue Headers,
until the frame is terminated or a Queue Header is reached the state diagram in Figure 3.6

explains all this really well.

3.4 Choice of UHCI

When considering a system level programming project like this one we
have to consider factors like debugging, previous work on this domain, development
environment, testing etc, after my extensive searching I found out that Qemu should be
use as my hardware Virtualizer, as minix is well supported and tested by developers on it,
at the time of development of this project UHCI emulation was really well supported by
Qemu than other host controllers. Driver for UHCI is bit complex, as major part is done
in software than hardware, more than any thing else it is the Qemu's debugging support

that keep me biased to UHCI.

Division Of Computer Science School of Engineering 24

USB Subsystem For Minix 3

Start
of Frame

get
FrameaList]i]

. .
o Qiontent = Land
Y [TDNF_Flag = 1and
! TOLekG=1]
-~ \- [l X
" A . v
Qeariexl = 1 and . -
1] (TO.VF Flag=Dor | ' '
; TO.Link.T = 1) . .
' \ p .
,,,,, ' i .
I 1 : .
Creanisxt = 1 ares = N
TONF_Fia | 1 =

o " . .
T | ! £ v
. X]

F = . ! | '
Use Queue Head Pointar D o . .
. i d ! ¥ &
Use Link Pointar | .
Execute TD }—w{ Update QHD} « = - = - ‘, f-
Qearmexl - [and § 5
TOLRT = 1 = Advanace Condition .)‘ .
= : Qeantexl = 1 -]
. B -7 A
Oeantest = 1 - 5
| M Advance Cord. | Lo == -

- =

: J—

* Coanlext = O and
TOLkO =1

Figure 3.6 Transfer queuing and traversal state diagram

Division Of Computer Science School of Engineering

25

USB Subsystem For Minix 3

CHAPTER 4

Project Scope and Limitations

This chapter explains about the exact scope of this project and does explain
the limitations it would be having once completed , this is just elaboration of the project

abstract.

4.1 Scope

When we verbally say 'USB stack' or 'USB subsystem' it is completely
vague, in other words it is the actual scope that defines the USB stack, USB specification
is really complex and complying to the USB standard is really a challenging task. Within
the project time frame allocated and what I researched on USB ,along with a single

programmer working on it ,I have defined the scope in the following points :

* Low/ Full speed support

* Control transfers

* Interrupt transfers

* USB driver interface (USBDI)

* Host controller driver interface (HCDI)

* Multiple host controller support

e UHCI host controller driver

* USBDI for Human Interface Device (HID) class driver

* Dummy HID Keyboard and Mouse Driver using boot protocol.

4.2 Limitations
e Bulk transfer
¢ Isochronous transfer

* Limited to 2 ports of UHCI root hub

Division Of Computer Science School of Engineering 26

USB Subsystem For Minix 3

* Synchronous Control transfer (usual is asynchronous)

* Single driver Single device (usually multiple driver can handle endpoints)
* No Direct Memory Access (DMA support)

* Performance and efficiency is not considered

* Power management

As we have defined the scope and limitation the following chapters would explain

the design , development environment, implementation and testing.

Division Of Computer Science School of Engineering

27

USB Subsystem For Minix 3

CHAPTER 5
Design of the Minix USB Subsystem

This chapter explains the software design of the Minix USB stack, I
explain why have I chosen such a design along with the advantages and drawbacks ,

further I brief how to achieve that in Minix.

5.1 Design

Original inspiration for the design came from the Minix 3 operating
system, Minix 3 has a Microkernel design (see chapter 1) , with this design as a base ,i
have divided the USB stack into 3 independent components that communicate each other
with Minix Message IPC (Inter Process Communication).The three components namely
USBD , USBDI , HCDI run in separate address space isolated from each other , which
makes the design much more reliable and fault tolerant ie. If one of them crash others will

keep on running. In simple terms I have followed the client - server architecture.

Main design principles are given below
* Modularity
* Reliability
* Scalability

e Fault tolerant

5.1.1 Modularity

A modular approach is an approach that subdivides a system into smaller
parts (modules) that can be independently created and then used to drive multiple
functionality ,further the advantages are flexibility in designs, augmentation (adding new
solution by merely plugging in a new module), and exclusion. In our design this is
achieved by dividing the entire USB stack into separate user mode process that are

independent of each other, further they communicate each other through message

Division Of Computer Science School of Engineering 28

USB Subsystem For Minix 3

passing , even if other end is not alive it doesn't affect the sender. The disadvantage of
modularity is performance in our case USBD would have run time over head in

logarithmic time ie in Big O, O(log(n)).

5.1.2 Reliability
As a result of modular design what we gain is reliability, so what exactly is

reliability with respect to our design ?

* It does what it is suppose to do as expected in time

* Resisting the failure infecting on other modules

Thus we achieve reliability through modularity as we separate them into individual
processes failure in one doesn't affect others, it does as designed with help of rendezvous

message [PC the minix provides.

5.1.3 Scalability

Scalability is a desirable property of a system, which indicates its ability
to either handle growing amounts of work in a graceful manner, we attain scalability as
the entire design is made as generic as possible , in our case any number of host controller
drivers could be hooked to USBD , along with the any number of device drivers using

USBDI, scalability is only limited to amount of memory available.

5.1.4 Fault Tolerant

Fault-tolerance is the property that enables a system to continue operating
properly in the event of the failure of some of its components. We gain this feature from
the minix inherent design of how device drivers work (see chapter 1) further as I have
explained above since each part of the subsystem execute as a single independent
process ,even if one of them goes down or some fault is trying to spread it doesn't affect
others , say in our case if UHCI-HCD goes down , and if any transfer was on progress
with USBD and OHCI-HCD it will have zero effect on them , thus we gain reliability

along with fault tolerance.

Division Of Computer Science School of Engineering 29

USB Subsystem For Minix 3

Alternatively I could have designed a monolithic USB stack where by
which we compile entire drivers into the stack ,this monolithic design give a good
performance boost but under the cost of proposed design principles. Drawback of
proposed design is the message passing overhead at USBD which might make USBD non
responsive at times . but will continue to work ,next drawback since we are using the
message passing IPC which are rendezvous there could be a possibility of hidden
deadlock which might pop up in logarithmic time period. The proposed design is showing
in the Figure 5.0

HHID Class —_—
Driwver

e usepr | A USBD
Class - etatioc \LM:i_n:Lx Message IPC
Driwver library J d

| Custom

Device
Driver

Legend

[il
= Totally isclated usermode process

USBD:Uniwversal Serial Bus Driwver

USBEDI:Universal Serial Bus Driver Interface

{:jadz ebESSON XTUTH

HCDI:Hoat Contreller Driwver Interface
HCDI

static

libracy

\
l

OHCI-HCD (2) UHCI-HCD (1)

Figure 5.0 Conceptual View of the proposed design

Division Of Computer Science School of Engineering 30

USB Subsystem For Minix 3

5.2 Brief idea of implementation in minix

Its been explained that entire elements run as user mode process , now
from Figure 5.0 we can understand that only USBD is the standalone process that act as a
server for the clients USBDI and HCDI ,one thing to keep in mind is that USBDI and
HCDI are not process rather a static library interface to which the clients link. The
communication protocol from clients to USBD is completely hidden in these interfaces ,
as far as clients are concerned they are just linking to C API (Application Programming
Interface) nothing more. When they start to execute they interface handles the rest , but it
is mandatory that clients follow a systematic approach to use of the C API as like to
register , deregister etc. One problem with it approach is that there is duplication of the
static library in memory for each clients well at the moment we don't deal with shared

library which is an obvious solution to it.

5.3 Drawbacks of proposed design
* Dead locking code
* Asno threads are used , USBD have high latency response
* Replication of static library in memory for each driver

« If USBD goes down clients are stateless and have to be restarted with USBD

Division Of Computer Science School of Engineering 31

USB Subsystem For Minix 3

CHAPTER 6

Development Environment

This chapter explains the development environment ,tools and compiler

used along with how to set I it up for the purpose.

6.1 Development Environment
Since it is system level programming project , what we mainly need is a
good debugging support with this focus in mind I decided to run Minix on a hardware

virutualizer which had good debugging support details of tools used are given below

* Qemu 0.11.1 : Hardware virtualizer

* Minix 3.1.5 svn5612

* Linux 2.6.33 (Slackware 13) : Host platform
* ACK C compiler (Minix default)

* SSH server on minix

* SSH FS on Linux

* cscope : to browse / grep minix code

e Editor : Vim

6.2 Setting Up

Main tool that helped for fast development is the sshfs (linux) along with
sshd on minix without which development would be really slow. This is how entire
setting up goes. I have minix 3.1.5 installed in gemu along with the ssh server ,once
minix boots up(Figure 6.0) I will have a gemu monitor (Figure 6.1) which I can use it to
control gemu, such that I would be able to virtually add new usb device , detach them etc,
another window I have a ssh login session (Figure 6.2) where by which I compile the

code, one advantage is the scrolling support which is absent in Minix console, next for

Division Of Computer Science School of Engineering 32

USB Subsystem For Minix 3

debugging I redirect the out put from minix's /var/log/messages (Figure 6.3) using ssh.
Main factor is the ability to mount a virtual minix file system to minix using sshfs ,this
has helped me lot, advantage of this approach is that we could use local tools in Linux to

prepare a IDE say I used Vim for it (Figure 6.4).

6.2.1 Qemu 0.11.1 configuration
/gemu -name Minix3.1.4svn5547 -monitor stdio -usb -redir tcp:2002::22 -m 300M \
-hda ./vm-hd/Minix-3.1.5r.img \

-net user -net nic,model=ne2k pci

Loading Boot image big.
kernel pm vfs rs memory log tty ds mfs um init (3186k)

INIX 3.1.5. (R3.1.5-r5612)

opyright 2009, Urije Universiteit, Amsterdam, The Netherlands
INIX is open source software, see http://www.minix3.org
Root device name is /devrscOdOpOs=0

wltiuser startup in progress ...: is.
[Sun Mar 14 08:04:03 GMT 2010

dev/cOdOpBsZ is read-write mounted on susr

devs/cOdOpBsl is read-write mounted on ~home
[Starting services: random dp8390 inetpci: no pci for port 1
pci: no pci for port 2

p83904#0: Realtek RTL8OZ9 (10EC/8029) at 0.3.0
pci: no pci for port 1
pci: no pci for port 2

printerdp8390#0: NEZOOQ at C100:11

ipc.
[Starting daemons: update cron syslogd.

nonamedLocal packages (start): sshd done.

inix Release 3 Version 1.5 (console)

inix login:

Figure 6.0 Minix 3.1.5 on gemu 0.11.1

Division Of Computer Science School of Engineering 33

USB Subsystem For Minix 3

w

11.1 monitor - type ‘help' for more information
info usbhost
opened /sys/bus/usb/devices
husb: using sys file-system with /dewv/bus/usb
Device 1.1, speed 480 Mb/s
Hub: USB dewvice 1d6b:0002, EHCI Host Controller
Device 2.1, speed 12 Mb/s
Hub: USB device 1ld6b:0001, UHCI Host Controller
Device 3.1, speed 12 Mb/s
Hub: USE device 1ld6b:8001, UHCI Host Controller
Device 4.1, speed 12 Mb/s
Hub: USB device 1d6b:0001, UHCI Host Controller
Device 2.2, speed 1.5 Mb/s
Class 06: USB device 084d9:1583, USB Keyboard
Device 4.2, speed 1.5 Mb/s
Class 00: USB device 07d0:4959, USB to IRDA
(gemu) Jj

Figure 6.1 Qemu Monitor
6.2.2 Mounting Minix file system using sshfs
sshfs -p2002 root@localhost:/usr/src/drivers/usb ~/minixfs

ssh -p2002 root@localhost

althaf@asma:~$ ssh -p20082 root@localhost
Last login: 5un Mar 14 08:08:44 2010
|- MINIX 3.1.5 USB Driver Project Edition -|
minix@root$ uname -a
Minix 108.0.2.15 3 1.5 i686
minix@roots I

Figure 6.2 local ssh session for compilation purpose

6.2.3 Redirecting kernel messages from /var/log/messsages

ssh -p2002 root@]localhost tail -f /var/log/messages

Division Of Computer Science School of Engineering

mailto:root@localhost
mailto:root@localhost

USB Subsystem For Minix 3

=

il Tarminal A=OR

althaf@asma:~% ssh -p2002 root@localhost tail -f /var/log/messages

14 10:55:45 10 kernel:

14 108:55:45 190 kernel: usbd: started

14 10:55:45 10 kernel:

14 10:55:45 10 kernel: usbd: Device driver 73169 registered
:55:45 10 kernel:
:55:45 10 kernel: usbd: Device driver 73171 registered
:55:45 10 kernel:
:55:45 10 kernel: uhci-hcd: started
:55:45 10 kernel: uhci-hcd: Intel 823715B (USB) (B086:7020) at 0.1.2
:55:45 10 kernel:
:55:45 10 kernel: usbd: Host controller driver 73173 registered
:55:45 10 kernel: uhci-hcd: registered with ushd

Figure 6.3 Redirecting kernel messages

L

} usbd_device_driver_t;

Figure 6.4 Editing file from minix locally in linux using vim

Once this development environment was setup , half of the headache while
it were development within minix was revealed, as minix would be really show while
running on a emulator it will not be fit for an IDE, the next chapter explains the

implementation of the USB subsystem.

Division Of Computer Science School of Engineering 35

USB Subsystem For Minix 3

CHAPTER 7

Implementation

Explains of how the proposed designed was implemented ,to be exact this
chapter will elaborate the various APIs the stack provides , this chapter doesn't explaind

any language specific implementation , for that purpose check the Appendix 1.

7.1 Implementation of USB subsystem

It started from bottom to top ,ie starting from host controller driver. After
understanding the UHCI design guide [5] ,the work was started from HCD for UHCI,
even though HCDI never existed at time of development ,i had good idea of how it
should be implemented after understanding Linux and Net BSD usb stack, further during

development I alternated my self in understanding the USB 2.0 specification.

7.2 Minix 3 services

Entire USB stack is based on minix 3 message passing IPC,which has
support for synchronous and asynchronous message passing , each component
communicate each other through a well defined custom protocol for this purpose which

will be discussed below.

ltypedef struct ﬂ

endpoint t m source; /* who sent the message */
int m type; /* what kind of message is it =/
1 union {

mess_1 m ml;
mess_2 m m2;
mess 3 m m3;
mess_4 m_md;
mess 5 m m5;
mess_7 m_m7;
mess 8 m m8;
mess_6 m_mb;
mess 9 m m9;
¥ om_u;
"} message;

Figure 7.0 structure that defines message data type

Division Of Computer Science School of Engineering 36

USB Subsystem For Minix 3

We basically use 3 types of messages (Figure 7.1,7.2,7.3) from the 9 provided by

minix, the message types used are shown below.

#define ml1 il m wu.m ml.mlil
#define ml1 i2 m u.m ml.mli2
#define ml1_ i3 m u.m ml.mli3
#define ml_pl m_u.m_ml.mlpﬂ
#define ml1 p2 m u.m ml.mlp2
#define ml1 p3 m u.m ml.mlp3

Figure 7.1 Message format 1

#define m2 i1l m u.m m2.m2il
#define m2 i2 m u.m m2.m2i2
#define m2_i3 m_u.m_m2.m2i3
#define m2 11 m u.m m2.m211
#define m2 12 m u.m m2.m212
#define m2 pl m u.m m2.m2pl
#define m2 s1 m u.m m2.m2s1

Figure 7.2 Message format 2

#define m3 i1 m u.m m3.m3il
#define m3 i2 m u.m m3.m3i2
#define m3 pl m u.m m3.m3pl
#define m3 cal m u.m m3.m3cal

Figure 7.3 Message format 3

These are the core message formats used for our IPC , message passing primitives that are

used from minix is shown in Figure 7.4

_PROTOTYPE(int send, (endpoint t dest, message *m ptr)
_PROTOTYPE(int receive, (endpoint t src, message *m ptr)
_PROTOTYPE(int sendrec, (endpoint t src dest, message *m ptr)
_PROTOTYPE(int sendnb, (endpoint t dest, message *m ptr)

B

Figure 7.4 Minix message passing primitives used for our purpose

All the calls are synchronous and rendezvous except sendnb() which is a non blocking

call .

Division Of Computer Science School of Engineering 37

USB Subsystem For Minix 3

7.3 Subsystem components
As explained in chapter 5 there are 3 components in the implementation
 USBD : USB driver which comply usb specification
* USBDI : a static library meant for device drivers

* HCDI : a static library to which HCDs link to

7.3.1 USBD

USBD is the core of the stack , it can be considered as the glue between
host controllers and the device drivers , it is USBD that would be sticking on to and
implementing USB specification request and data structures , in our implementation we

have defined set of protocols that USBDI and HCDI uses to communicate with USBD.

These are shown below

#define USBD TPC_BASE OxEBO
/* USBD -= HCD IPC =/

#define USBDZHC _CONTROL_REQD USBD IPC BASE+08x01
#define USBDZHC_INTERRUPT_REQD USBD IPC BASE+0x02
#define USBDZHC_BULK_REQ USBD IPC BASE+0x03
#define USBDZHC IS0C REQ USBD IPC BASE+0:x04
#define USBDZHC_HC_ REGISTERED USBD IPC BASE+0x05
#define USBDZHC _HC REGISTER_FAIL USED_IPC BASE+0xB6
#define USBDZALL SIGTERM USBD IPC BASE+0x07
#define USBD2HC CANCEL_ XFER USBD IPC BASE+0x08
#define AFER_INTERRUPT BxB1
#define XFER_BULK BxB2
#define XFER_IS0C Bx03
#define AFER_ALL Bx04

Figure 7.5 USBD to HCDI

Division Of Computer Science School of Engineering 38

USB Subsystem For Minix 3

f* HO -
#define
#define
#define
#define
#define
#define
#define
#define

= USBD IPC =/

HC2USBD REGISTER USBD IPC BASE+0x00
HC2USBD NEW DEVICE FOUND USBD IPC BASE+0x0A
HC2USBD DEVICE DISCONNECTED USBD IPC BASE+0x0B
HC2USBD PING USBD IPC BASE+0x0C
HC2USBD HC DERGISTER USBD IPC BASE+0x0D
USB INTERRUPT REQ STS USBD IPC BASE+0xOE
USB BULK REQ STS 0x00

USB ISOC REQ STS 0x00

Figure 7.6 HCDI to USBD

/* USBD -> USBDI IPC #*/

#define USBDZUSBDI DD REGISTERED USBD IPC BASE+Gx10
#define USBD2USBDI DD REGISTER FAIL USBD IPC BASE+Gx11
#define USBDZUSEDI 0D PROBE USBD TPC BASE+0x12
#define USBD2USBDI DEVICE DISCONNECT |USBD_IFE_BASE+Bx13
Figure 7.7 USBD to USBDI

/* USBDI -= USBD IPC #*/

#define USBDIZUSBD REGISTER DD USBD TPC BASE+0x14
#define USBDIZUSED DERGISTER DD USBD IPC BASE+0x15
#define USBDIZUSED DD PROBE STS USBD IPC BASE+0x16
#define DD _DEV _ACCEPT BxB1

#define DD DEV REJECT BxB2

#define USBDIZUSED REQ USBD IPC BASE+0x17
#define GET UDESC DEVICE BxB1

#define GET _UDESC CONFIG Bx02

#define GET UDESC INTERFACE 0x03

#define GET UDESC ENDPOINT GxB4

#define GET STATUS Bx05

#define SET CONFIG Bx06

#define SET INTERFACE Bx07

#define SET IDLE Bx08

#define GET IDLE Bx09

#define SET PROTOCOL B OA

#define GET PROTOCOL BxBB

#define SET REPORT BxBC

#define GET_REPORT B:x 00

#define USBDIZUSBD INTERRUPT REQ USED_IFE_BASE+EK1§
#define USBDIZUSED BULK REQ USBD IPC BASE+0x19
#define USBDIZUSED ISOC REQ USBD IPC BASE+0x20

Figure 7.7 USBDI to USBD

Division Of Computer Science School of Engineering

39

USB Subsystem For Minix 3

7.3.1.1 Standard USB requests

Chapter 9 of USB specification [1] specify set of standard requests USBD

implementations the following ,

int usbd get configuration(..);
int usbd get descriptor(..)

int usbd get interface(..);

int usbd get status(..);

int usbd set address(..);

int usbd set configuration(..);
int usbd set interface(..);

Figure 7.8 Standard USB request that USBD implements

These calls are not directly accessible ,rather these calls are provided as

services to USBDI , USBDI as has to make request using the minix message IPC with

respect to the protocols defined above.

7.3.1.2 Responsibilities of USBD

Servicing USBDI for standard USB request.

Allocating / Deallocating resources for new usb device when attached / detached.
Mapping Device driver request to appropriate host controller.

Mapping Device drivers to devices.

Managing multiple host controller drivers.

Allocating resources for host controller driver.

Gracefully terminating itself during panic and informing the clients.

Bus enumaration see [1] 9.1.2

7.3.2 USBDI

USBDI is a static library (Figure 7.9) that should be linked to and usb

device driver so that it could avail service from USBD , USBDI doesn't implement any

USB specific standards rather it map (Figure 7.10) the the calls or hides it from the

Division Of Computer Science School of Engineering 40

USB Subsystem For Minix 3

driver actual message passing involved with USBD.

int usbdi init(..);

int usbdi register driver({..);
void usbdi dereisgter driver(..);
int usbdi get device desc(..);
int usbdi get device cdesc(..)
int usbdi get device idesc(..);
int usbdi get device edesc(..)
int usbdi set configl(..);

int usbdi probe status(..));
int usbdi msg usbhdi(..);

void usbdi fatal abort(..);]

r

Figure 7.9 USBDI interface for device drivers

ushdi_init(..)
This should be called before the driver try to use any of the usbdi interface,
this call actually gets the USBD process endpoint number and stores it in a global

variable, further communication / other usbi functions use this value for IPC with USBD.

usbhdi_register_driver(..)
When this call is made USBD register the driver process endpoint number

in the usbd driver data structure, this information is needed while probing.

usbdi_deregister_driver(..)

This call should be made when the driver wants to exit , so that usbd could
release all the resources.
usbhdi_get desc(..)

get the device descriptor see usb specification [1] section 9.4.3
usbhdi_get cdesc(..)

get the configuration descriptor see usb specification [1] section 9.4.2
usbdi_get idesc(..)

get the interface descriptor see usb specification [1] section 9.4.4
usbdi_get _edesc(..)

get the endpoint descriptor for given config number , interface number and

enpoint index.

Division Of Computer Science School of Engineering 41

USB Subsystem For Minix 3

usbhdi_set_config(..)

set given configuration number see usb specification [1] section 9.4.7.
usbdi_probe_status(..)

used to reply DD DEV_ACCEPT / DD DEV_REJECT as probe satus , if
the driver is ready to claim the device or not claiming it.
usbdi_msg_usbd(..)

send custom message to usbd , not used by drivers but for future use.

int usbdi set config(usbd dev id t dewvice,int cfno)

{
message msg;
int r;
if (!usbd procnr) {
printf{ 13
return EINVAL;
}
msg.m_type = USBDIZ2USBD REQ;
msg.m2 i1 = SET CONFIG;
msg.m2 i2 = cfno;
msg.m2 11 = device;
r = sendreci{usbd procnr, &msg) ;
if (0K '= r) {
printf(i St 11t ')
return r;
}
return msg.m_type;
}

Figure 7.10 Shows how USBDI hides message passing in usbdi_set config

7.3.2.1 Extending USBDI for HID Request

In order show that implementation is working ,I have extended the USBDI
for all the HID class requests see [7] chapter 7, further I explain how to write device
drivers for HID class devices see Figure 7.11 for USBDI HID request implementation.
Apart from the control transfers ,USBD implements interrupt transfers which is usually

used by the HID class device for asynchronous interrupt events, USBDI does the

Division Of Computer Science School of Engineering 42

USB Subsystem For Minix 3

mapping for interrupt as shown in Figure 7.11.

int usbdi get report(..);
int usbdi set report(..);
int usbdi get protocol(..);
int usbdi set protocol(..);
int usbdi get idle(..);

int usbdi set idle(..):

int usbdi interrupt reqg{..);
|

Figure 7.11 HID request implementation and interrupt request

HID request based dummy USB keyboard and mouse driver code is given in Appendix 2
, Figure 7.12 , 7.13, 7.14, 7.15 shows drivers in action along with the standard descriptors
read ,this driver doesn't do much other than getting the scan codes and coordinates,in
actual implementation the device driver developer is suppose to handle the rest like

integrating it to tty etc. USBI just provides mechanism not policy.

ar 15 04:41:00 10 kernel: usbkbd: USBE HID Keyboard found
{ar 15 04:41:00 10 kernel: ushd: device driver 73147 claimed device Ox04d9:0x1503

1sbkbd: usbkbd: irg runming
scan codel®]) scan code
an codell] : scan code
an codelsl) scan code
zscan codel3] scan code
n codel4] Ix16 scan code
codel5]) scan code
-an codelb] . scan code
ush scan codel?]) 9 scan code se

1=sbhkbd: wushkbd: irg

1
1
1
1
1
1
1
1

Mar 15 B4:46:07 10 kernel: ushd:
Mar 15 04:46:07 10 kernel: ushkbd: default 3603
Mar 15 04:46:07 10 kernel: usbkbd: HID USB Keyboard dettached

Figure 7.12 Showing attach / detach of HID keyboard device along scans codes

Division Of Computer Science School of Engineering 43

USB Subsystem For Minix 3

un

B4:48:58 kerne’l
04:40:58 kernel: bLength :18
kernel: bDescriptorType :1

: DEVICE DESCRIPTODR
kernel: bocdUSs :118

e el
oo

karne bDaviceClass :0

kerne beviceSubClass

kernel: bDeviceProtocol

kernel: bMaxPacketSize
04 : 408 kernel: idvendor :04d9
Bd:41 kernel: idProduct:1583
f4:41 kernel: beodDevice 316
D4:41: kernel: iManufacturer :1 | 1
Ba:41: kaernel: iProduct :2 { USB Keyboard)
Bd:41: kernel: iSerial NHumber 0]
Od:al: kernel: bHumConfigurations :1
04:41:80 kernel: CONFIGURATION DESCRIPTOR
B4:41:08 kernel: bLength : 9
04:41:00 kernel: bDescriptorType
D4:41:08 kernel: wTotalLength :
B4:41:080 kernel: bNumInterface : 2
04:41:08 kernel: bConfigurationWal
04:41:00 kernel: AiConfiguration :
04:41:00 kernel: bmAttributes Oxab
04:41:00 kernel: bMaxPower : 100mA
B4:41:800 kernel: INTERFALE DESCRIPTOR
B4:41:084 Kerneal: bLength = 9
B4:41:08 kernel: bDescriptorType :
Bd:41:00 kernal: bInterfaceNumber :
04:41:08 kernel: baAlternateSetting :
B4:41:0808 kernel: bHumEndpoints : 1

un wn

e O A = B O I A T U A
mwmwwmwmWmwmwmwmwmwmwmmmm

(O S S
U oo

o
o

1
15
1

un

O4:41:00 kernel bInterfaceClass) :
04:41:00 kernel bInterfaceSublClaszs
B4:41:080 kernel bInterfaceProtocol
04:41:00 kerne’l iInterface = 0
b4:41:84 kerna’l ENDPOINT DESCRIPTOR
04 :41:080 kernel bLength : 7
B4:41:08 kernel: bescriptorType : 5
04:41:00 kernel: bEndpointAddress : BxB1
04:41:00 kerne’l bmAttributes 3
g4:41:068 kernel wHaxPacketSize : B
B4:41:00 kerne’l bInterval : 18
B4:41:00 kernal INTERFALE DESCRIPTOR
04:41:08 kernal bLength = 9

04 :41:00 kernel blescriptorType : 4
B4:41:04 karnel plnterfaceNumber = 1
B4:41:0608 kernel bAlternateSetting : B8
Od:41:080 kernel : bHumEndpoints : 1
04:41:80 kernal: bInterfaceClass) :
04:41:00 kerneal bInterfaceSubClass
B4:41:08 kerne bInterfaceProtocol
fd:41:00 kerna’l iInterface = @
b4:41:00 kernel ENDPOINT DESCRIPTOR
B4:41:08 kaernel bLength : 7
04:41:00 kernel: blescriptorType :
04:41:00 kernel: bEndpointAaddress
04:41:00 kernel: bmAttributes :3
B4:41:00 kernel: wMaxPacketSizre
gd:41:00 kernal: bIntarval : 18

Figure 7.13 Descriptors of HID keyboard that is read by USBD

un

T = O
W uwmmwwnuwnw ununwn

e I © A 0 T = T S
mwmwmwmwmwmwmwmwmmiwmm

un

e
un

un

Division Of Computer Science School of Engineering

USB Subsystem For Minix 3

USB HID mouse found
e driver 73149 claimed device 0x046

1rg running
ght button clicked
iddle button clicked
(D,y: 1)

i done

1ebm=s: irg running
Bight button clicked
eft button clicked
(x: B,y: 13)

i1Ishd: Bus:® Port Device:2
ishms: HID USEB mouse dettached

(%))

DEVICE DESCRIPTOR
bLength :18
bDescriptorType :1
bedUsSB

bDewvic
bDeviceSubClass
bDewi
bHaxPacketSize
idvendor :846d

(¥)]

W

L

{ Logitech)
iProduct :2 { Optical USB Mouse)
iSerial NHumber :8 | 1]
bHumConfigurations :1
CONFIGURATION DESCRIPTOR

bLength : 9
bDescriptorType : 2
wTotalLength 34
bHumInterface : 1
bConfigurationvValue
iConfiguration = @
bsAttributes Oxad
bHaxPower : 100mA
INTERFACE DESCRIFTOR

bLength : 9

bDescriptorType

bInterfaceNumber
bAlternateSetting

bHusEndpoints : 1

bInterfaceClass) :

bInterf SubClass
bInterf

iInterf H =]

ENDPOINT DESCRIPTOR
bLength : 7
bDescriptorType : 5
bEndpointAddress : 8x81
bmAttributes :3
wHaxPacketSize
bInterval : 18

W ou;

W

o

w3

o

g
B
g
8
g
g
g
g
g
8
B
g
g
B
B
B
g
g
B
g
8
g
g
B
g
g
8
g
g
g
g
g
8
g
g
B
g
g
8
g
B

L

Figure 7.15 Descriptors of HID keyboard that is read by USBD

Division Of Computer Science School of Engineering

45

USB Subsystem For Minix 3
7.3.3 HCDI and UHCI HCD

UHCI is well introduced in chapter 3, one of the main hurdles during the
UHCI driver development was the requirement that Tds and Qhs should be aligned in
16byte boundary,as I couldn't verify that minix implementation of malloc() will always
return address of such nature ,i had to design a memory manager for this purpose without
which transfer queuing would be impossible. According to design in chapter 5 HCDI is a
static library linked to HCDs , since we don't have multiple HCDs, implementation of the
library was a low priority task right now HCDI is embedded in the UHCI HCD , HCDI
basically consist of the protocols specified in Figure 7.5 and Figure 7.6, UHCI-HCD

implementation is shown in Appendix 2.

7.3.3.1 Implementation of USBD memory Manager

We have to get a 16byte aligned address for each instances of td and gh ,
for that purpose I implemented a tiny slab allocator , which divides a 4K or 64K page by
fixed memory size during initialization of the slab , if the given memory size is not
divisible by 16 its is rounded off to a size divisible by 16.

These functionality along with other memory custom memory
management routine is combined into USBMEM , see the Figure 7.17 below for the core

data structures and functions in usbdmem.

struct usbd_page {

u32 t size; /* page size ¥
ulé t per_object len; /* size of each object in page bl |
ulé t capacity; /* capacity = (size/per_object len))

ult t filled cnt; /* Number of elements allocated ey)
phys_bytes phys _start; /* page physical base address =
vir bytes *vir _start; /* page virtual base adrress EE

/* u8 t is used instead of vir bytes ,for the pointer arithmetic */
u8 t *next free; /* next free space in the page */

struct dealloc_list *dealloc start; /* contains list of dealloced addre541f

int usbd init pagei(..);

void usbd free page(..);

void *usbd const_alloc(..);

void usbd const dealloci..);
void *usbd var alloc{..);

void usbd_var dealloc(..):

phys bytes usbd vir to phys(..);

Figure 7.17 Methods and data structures of USBD

Division Of Computer Science School of Engineering 46

USB Subsystem For Minix 3
See appendix 3 for actual code of usbd memory management , though it was aimed for

UHCI HCD, it was made generic enough to be used with USBD. Appendix 4 shows a
simplified event trace diagram of USBD and UHCD.

Division Of Computer Science School of Engineering

47

USB Subsystem For Minix 3

CHAPTER 8
Conclusion

Universal Serial Bus is a vast topic and covers many domains in
engineering such as electronics, electrical and computer science, thus proper
understanding of the USB requires narrowing the domain. This project focus was on the
software approach to the USB which requires familiarizing the chapters 5, 8, 9 of USB

specification 2.0.

This project implemented usb subsystem for Minix 3 as per the specified
scope. Further, evaluated the usb subsystem using HID requests and implemented a HID
keyboard and mouse driver that makes use of the driver API to communicate with the

device , result of the evaluation and testing were really encouraging.

The stack is limited in functionality with major features lagging as seen in
the limitations, However within the given time frame a working prototype of proposed
design were implemented. This implementation need further improvement to be made
useful enough for daily use, it requires rigorous testing to make sure it is functioning as

per the specification.

Future scope of this stack is plenty. As it was designed in a modular
independent way new modules that give functionality such as USB mass storage, USB
Audio etc could be implemented. This project has good scope if open sourced, so it has

been releasing under GNU General Public License.

Division Of Computer Science School of Engineering 48

USB Subsystem For Minix 3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

Universal Serial Bus Revision 2.0 Compaq Computer Corporation,Hewlet Packard
Company,Intel Corporation, Lucent Technologies Inc, Microsoft Corporation,
NEC Corporation, Koninklijke Philips Electronics N.V, April 27,2000

USB Complete: Everything You Need to Develop Custom USB Peripherals ,
Lakeview Research August 31, 2005

Universal Serial Bus Architecture by Anderson and Dzatko, Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA 2001 ISBN:0201309750

USB for the L4 Environment ,Dirk Vogt September 2008 ,Technische Universitét
Dresden ,Fakultit Informatik Institut fiir Systemarchitektur

UHCI Design Guide ,Intel Corporation ,Revision 1.1, March 1999
Design and Implementation of a USB Stack for the Java-based JX Operating
System,vorgelegt von Dreweke Alexander Bachelor Thesis in Computational

Engineering,03 November 2003

Device Class Definition for Human Interface Devices , USB implementers
Forum ,Firmware Specification,Version 1.11 ,06/27/2001

Division Of Computer Science School of Engineering 49

USB Subsystem For Minix 3

|-- Makefile
|-- drivers.conf
|-- uhci-hed.c
|-- uhci.h

|-- usb.h

|-- usbd.c

|-- usbd.h

|-- usbdi.c

|-- usbdi.h

|-- usbdmem.c
|-- usbdmem.h
|-- usbkbd.c

‘-- usbms.c

Appendix 1

Source code Organization

:gnu makefile

:usb specific driver configuration
:uhci host controller driver
:uhci driver meta data

:usb specification chapter 9
:usb driver

:usbd meta data

:usbdi implementation
:usbdi meta data

:usbdmen implementation
:usbdmem meta data
:dummy keyboard driver

:dummy mouse driver

Division Of Computer Science School of Engineering

50

USB Subsystem For Minix 3

Appendix 2
Dummy Keyboard and mouse driver

HID keyboard driver using boot protocol

/
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You s
along
Inc.,

Febru

(c) ¢

speci
/

I T R T

/*NOTE :

*

R

/

#include
#include

#include
#include
#include
#include
#include

#include
#include
#include

#include

#include
#include

#undef

hould have received a copy of the GNU General Public License

with this program; if not, write to the Free Software Foundation,
675 Mass Ave, Cambridge, MA 02139, USA.
ary 2010

opyright 2009,2010 Althaf K Backer <althafkbacker@gmail.com>

(C) Copyright 1998 The NetBSD Foundation, Inc.
for the usb_2_setl[] mapping
Simple USB HID keyboard driver that works on Boot protocol as per HID

fication version 1.11 (27/6/2001)

This is not exactly a driver rather just an implementation to show
that the usb stack work from top to bottom , what you see here is
just a dummy driver that reads what ever key is being pressed

and display them along with scan code

It would be nice if some one try to integrate this with tty

"../drivers.h"
"../libdriver/driver.h"

<minix/ds.h>
<minix/vm.h>
<minix/sysutil.h>
<minix/keymap.h>
<ibm/pci.h>

<sys/mman.h>
<stdio.h>
<stdlib.h>

<string.h>

"usbd.h"
"usbdi.h"

DPRINT_PREFIX

#define DPRINT PREFIX "\nusbkbd: "

/* Testing */
#define SET_BOOT_P 1
#define SET_REPORT_P 0

usbd_dev_id_t kbd_device;
char numon = 1 << 0;
char capson = 1 << 1;
char scrlon = 1 << 2;
char allon =1<<0 | 1<<1 1 << 2;
char alloff = 0;
char dat[10] =
{ 0, 0,
0, 0,

0, 0,

o, 0,

0, 0
Yi
char buf[2] = {0, 0};

#define NN 0

/* no translation

short keymap[256] = {
NN, NN, NN, NN,
er, '£', 'g',
'‘m', ‘'n', ‘o', 'p', 'q', 'r', 's', 't',

Division Of Computer Science School of Engineering

USB Subsystem For Minix 3

/*

ar, v, 'w', 'x', 'y', t'z', ‘1t 20,

"3v, '4r, 'S5, 6, '7', '8, , ‘o',
‘\n', "\e', '"\b', '\t', ' v, r-r, or=r, o[
T1t, N\, NN, tgt, N\t v

'/', NN, Fl, F2, F3, F4, F5, F6,
F7, F8, F9, F10, F11, F12, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, '*', '=', ‘'+',

NN, END, DOWN, PGUP, LEFT, NN, RIGHT, HOME,

UP, PGDN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,
NN, NN, NN, NN, NN, NN, NN, NN, NN, NN, NN,

* Translate USB keycodes to US keyboard XT scancodes.
* Scancodes >= 0x80 represent EXTENDED keycodes.

*

NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,

NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,

NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,

* See http://www.microsoft.com/whdc/device/input/Scancode.mspx

*/

const u8_t usb_2_setl[256] = {

NN,
0x12,
0x32,
0x16,
0x04,
Oxlc,
0x1b,
0x35,
0x41,
0x7f,
Oxcb,
0x9c,
0x48,
0x5d,

NN,
0x91,
0xb0,
0x70,

NN,

NN,

NN,

NN,

NN,

NN,

NN,

NN,

NN,

NN,
0x1d,

NN,

NN,

NN,

Yi

NN, NN, NN, Oxle, 0x30, 0x2e, 0x20,
0x21, 0x22, 0x23, 0x17, 0x24, 0x25, 0x26,
0x31, 0x18, 0x19, 0x10, 0x13, Ox1lf, 0x14,
0x2f, 0x1l1, Ox2d, 0x15, 0x2c, 0x02, 0x03,
0x05, 0x06, 0x07, 0x08, 0x09, OxO0a, 0xOb,
0x01, O0x0e, 0x0f, 0x39, 0x0Oc, 0x0d, Oxla,
0x2b, 0x2b, 0x27, 0x28, 0x29, 0x33, 0x34,
0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,
0x42, 0x43, 0x44, 0x57, 0x58, Oxaa, 0x46,
0xd2, 0xc7, 0xc9, 0xd3, Oxcf, 0xdl, Oxcd,
0xd0, 0xc8, 0x45, 0xb5, 0x37, Ox4a, Oxde,
0x4f, 0x50, 0x51, Ox4b, Ox4c, 0x4d, 0x47,
0x49, 0x52, 0x53, 0x56, 0Oxdd, 0x84, 0x59,
0x5e, 0x5f, NN, NN, NN, NN, NN,

NN, NN, NN, 0x97, NN, 0x93, 0x95,
0x92, 0x94, 0x9a, 0x96, 0x98, 0x99, O0xa0,
Oxae, NN, NN, NN, Ox7e, NN, 0x73,
0x7d, 0x79, 0x7b, 0x5c, NN, NN, NN,

NN, 0x78, 0x77, 0x76, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,
0x2a, 0x38, O0xdb, 0x9d, 0x36, 0xb8, 0Oxdc,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

NN, NN, NN, NN, NN, NN, NN,

_PROTOTYPE(void kbd_probe, (message m2kbd));
_PROTOTYPE(void kbd device_dettached, (void));
_PROTOTYPE(void kbd_irqg, (void));

int main(void)

{

U32_t self proc;
message m2kbd;
int r;

system _hz = sys_hz();
r = ds_retrieve_ u32("usbkbd",&self proc);
if (0K != 1) {
printf("ds_retrive 32: failed")
return EXIT FAILURE;
}

if(OK != usbdi_init())

usbdi_fatal_ abort("usbkbd","failed to register");

if(OK != usbdi_register_driver())

usbdi_fatal_abort("usbkbd","failed to register");

while (TRUE) {
if ((r = receive(ANY, &m2kbd)
panic("uhci-hcd:",

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

i

- 07 */
- 0f */
- 17 */
- 1f */
- 27 */
- 2f */
- 37 */
- 3f */
- 47 */
- 4f */
- 57 */
- 5f */
- 67 */
- 6f */
- 77 */
- 7f£ */
- 87 */
- 8f */
- 97 */
- 9f */
- a7 */
- af */
- b7 */
- bf */
- c7 */
- cf */
- d7 */
- df */
- el */
- ef */
- £7 */
- ff */

) != OK)
"receive failed",

NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,

NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,
NN,

r);

Division Of Computer Science School of Engineering

52

USB Subsystem For Minix 3

switch (m2kbd.m_source) {
case RS_PROC_NR:
notify(m2kbd.m source);

break;
case PM_PROC_NR: {

sigset_t set;

if (getsigset(&set) != 0)

break;
if (sigismember(&set, SIGTERM)) {

usbdi_dereisgter_driver();

goto aborted;

}
}
break;
default:
DPRINTF (1, ("default %d ", m2kbd.m_type));
goto usbd2usbdi_msg;
}
continue;

usbd2usbdi_msg:
switch (m2kbd.m type) {
case USBD2USBDI_DD_PROBE:
kbd_probe(m2kbd) ;
break;
case USBD2USBDI_DEVICE_DISCONNECT:
/* Message info from usbd
*
* m2kbd.m2_11 : device id
* this a valid case if this driver
* handle multiple devices
*/
kbd_device_dettached();
break;
case USB_INTERRUPT_REQ_STS:
if (OK == m2kbd.m2_il)
kbd_irq();
break;
case USBD2ALL_SIGTERM:

DPRINTF (1, ("SIGTERM received from usbd , driver unstable"));

break;
default:

DPRINTF(1, ("unknown type %d from source %d", m2kbd.m_type,

m2kbd.m_source));

aborted:
return (OK);

void kbd_probe(message m2kbd)

{
usb_interface_descriptor_t idesc;
usb_endpoint_descriptor_t edesc;
usb_config descriptor_t cdesc;
message reply;
int r;

DPRINTF (1, ("inside kbd_probe"));

r = usbdi_get_device_cdesc(m2kbd.m2_11,&cdesc,1);

if (OK != r) {
printf("\nusbkbd: failed to GET_UDESC_CONFIG: 3%d",r);
return;

}

r = usbdi_get device_idesc(m2kbd.m2_11,&idesc,1,0);
if (OK != r) {

printf("\nusbkbd: failed to GET UDESC_INTERFACE: %d",r);

return;
}
if(3 != idesc.bInterfaceClass || 1 != idesc.bInterfaceSubClass |
1 != idesc.bInterfaceProtocol) {
usbdi_probe_status(m2kbd.m2_11,DD_DEV_REJECT);
return;

}

kbd_device = m2kbd.m2_11;

/* Inform usbd driver can claim the device */

usbdi_probe_status(kbd_device,DD_DEV_ACCEPT);

printf("\nusbkbd: USB HID Keyboard found");

r = usbdi_get_device_edesc(kbd_device,&edesc,1,0,0);
if (OK != r) {

printf("\nusbkbd: failed to GET UDESC_ENDPOINT: 3%d",r);

return;

}

r = usbdi_set config(kbd_device,1);
if (OK != r) {

Division Of Computer Science School of Engineering

53

USB Subsystem For Minix 3

printf("\nusbkbd: failed to SET CONFIG: %d",r);
return;

}

#if SET_BOOT P
printf (" \nusbdkbd: setting boot protocol");
/* Set boot protocol */
r = usbdi_get_protocol(kbd device, idesc.bInterfaceNumber, buf);
if (OK !=r) {
printf("\n get protocolas");

}
printf("\n get protocol 0x%x 0x%x",buf[0],buf[l]);
r = usbdi_set_protocol (kbd_device, 0, 0);
if (OK != r)
return;
#endif

#if SET REPORT P
printf (" \nusbdkbd: setting report protocol");
/* Set boot protocol */
r = usbdi_set protocol(kbd_device, 1, idesc.bInterfaceNumber);
if (OK != r)
return;
r = usbdi_get_report(kbd_device, RT_IN, 0, 8, idesc.bInterfaceNumber, dat);
if (OK != r) {
printf("\n failed");
return;

}
kbd_irq();
#endif

#if SET_BOOT_P
r = usbdi_set_idle(kbd_device, 0, 0, idesc.bInterfaceNumber);

if (OK 1= r)

return;
r = usbdi_get_idle(kbd_device, 0, idesc.bInterfaceNumber, buf);
if (OK != r)

return;

printf("\n get idle 0x%x 0x%x",buf[0],buf[l]);
/* Just for fun show up some light show :D */

usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber, &numon); USBD_MSLEEP(2);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber, &capson); USBD_MSLEEP(50);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber,&scrlon); USBD_MSLEEP(2);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber,&alloff); USBD_MSLEEP(100);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber, &numon); USBD_MSLEEP(2);
usbdi_set_ report(kbd device,RT_OUT,0,1,idesc.bInterfaceNumber,&alloff); USBD_MSLEEP(10);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber,&scrlon); USBD_MSLEEP(60);
usbdi_set_report(kbd device,RT_OUT,0,1,idesc.bInterfaceNumber, &capson); USBD_MSLEEP(2);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber, &numon); USBD_MSLEEP(10);
usbdi_set_report(kbd device,RT_OUT,0,1,idesc.bInterfaceNumber,&alloff); USBD_MSLEEP(10);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber,&allon); USBD_MSLEEP(2);

usbdi_set_ report(kbd device,RT_OUT,0,1,idesc.bInterfaceNumber,&alloff);
usbdi_set_report(kbd_device,RT_OUT,0,1,idesc.bInterfaceNumber, &numon);
/* Start the interrupt polling for keyboard events */
usbdi_interrupt_req(kbd_device,edesc.bEndpointAddress,dat);

#endif
}
void kbd_irg(void)
{
int i = 0;
char buf[10];
DPRINTF(1, ("usbkbd: irg running"));

memcpy (buf,dat,8);
for (i = 0;1i < 8;i++)
printf("\n usb scan code[%d] = 0x%02x scan code set 1 0x%02x %c",i,buf[i],

usb_2_setl[buf[i]], keymap[buf[i]]);
DPRINTF(1, ("usbkbd: irg done"));

}
void kbd_device_dettached(void)
{
/* Handle dettached case */
DPRINTF (1, ("HID USB Keyboard dettached"));
}

HID Mouse driver using boot protocol

* February 2010

*
* (C) Copyright 2009,2010 Althaf K Backer <althafkbacker@gmail.com>
*

* Simple USB HID mouse driver that works on Boot protocol as per HID
* specification version 1.11 (27/6/2001)

*/

/* NOTE: You are better off looking into usbkbd.c ,both are of similar
* nature.

*/

#include "../drivers.h"

Division Of Computer Science School of Engineering 54

USB Subsystem For Minix 3

#include "../libdriver/driver.h"

#include <minix/ds.h>
#include <minix/vm.h>
#include <minix/sysutil.h>
#include <minix/keymap.h>
#include <ibm/pci.h>

#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "usbd.h"
#include "usbdi.h"

#undef DPRINT PREFIX
#define DPRINT_ PREFIX "\nusbms: "

_PROTOTYPE(void ms_probe, (message m2ms));
_PROTOTYPE(void ms_irqg, (void));
_PROTOTYPE(void ms_device_dettached, (void));

usbd_dev_id_t ms_device;

char dat[10] =

{ 0, 0,
0, 0,
0, 0,
0, o,
0, 0
Yi

int main(void)

{
U32_t self_proc;
message m2ms;
int r;

system_hz = sys_hz();
r = ds_retrieve_u32("usbms",&self proc);
if (OK != r) {
printf("ds_retrive 32: failed");
return EXIT_FAILURE;

}
if(OK != usbdi_init())

usbdi_fatal abort("usbms","failed to register");
if (OK != usbdi_register_driver())

usbdi_fatal abort("usbms","failed to register");

while (TRUE) {
if ((r = receive(ANY, &m2ms)) != OK)
panic("uhci-hecd:", "receive failed", r);

switch (m2ms.m_source) {
case RS_PROC_NR:
notify(m2ms.m_source);
break;
case PM_PROC_NR: {
sigset_t set;
if (getsigset(&set) != 0)
break;
if (sigismember(&set, SIGTERM)) {
usbdi_dereisgter driver();
goto aborted;

}
}
break;
default:
DPRINTF (0, ("default %d ", m2ms.m_type));
goto usbd2usbdi_msg;
}
continue;

usbd2usbdi_msg:
switch (m2ms.m_type) {
case USBD2USBDI_DEVICE_DISCONNECT:
/* Message info from usbd
*

* m2kbd.m2_11 : device id
* this a valid case if this driver
* handle multiple devices
*/
ms_device dettached();

break;
case USB_INTERRUPT REQ STS:
if (OK == m2ms.m2_il)
ms_irq();
break;

case USBD2USBDI_DD PROBE:

Division Of Computer Science School of Engineering

USB Subsystem For Minix 3

ms_probe (m2ms) ;
break;
case USBD2ALL_SIGTERM:
DPRINTF (1, ("SIGTERM received from usbd , driver unstable"));

break;
default:
DPRINTF(0, ("unknown type %d from source %d", m2ms.m type,
m2ms.m_source));
}
}
aborted:
return (OK);
}
void ms_probe(message m2ms)
{

usb_interface_descriptor_t idesc;
usb_endpoint_descriptor_ t edesc;
usb_config_descriptor t cdesc;
message reply;

int r;

DPRINTF (0, ("inside ms_probe"));

r = usbdi_get_device_ cdesc(m2ms.m2_11,&cdesc,1);

if (OK != r) {
DPRINTF(1, ("failed to GET_UDESC_CONFIG: %d",r));
return;

}

r = usbdi_get_device_idesc(m2ms.m2_11,&idesc,1,0);
if (OK != r) {

DPRINTF (1, ("failed to GET_UDESC_INTERFACE: &d",r));
return;
}
if(3 != idesc.bInterfaceClass || 1 != idesc.bInterfaceSubClass |
2 != idesc.bInterfaceProtocol) {
usbdi_probe_ status(m2ms.m2_11,DD DEV_REJECT);
retur;; - - - -

}

ms_device = m2ms.m2_11;

/* Inform usbd driver can claim the device */
usbdi_probe_status(ms_device,DD_DEV_ACCEPT) ;
DPRINTF (1, ("USB HID mouse found"));

r = usbdi_get device_edesc(ms_device,&edesc,1,0,0);
if (0K != 1) {
DPRINTF(1, ("failed to GET_UDESC_ENDPOINT: %d",r));
return;

}

r = usbdi_set_config(ms_device,1);

if (OK != r) {
DPRINTF(1, ("failed to SET_CONFIG: %d",r));
return;

}
DPRINTF (1, ("setting boot protocol"));
/* Set boot protocol */
usbdi_set_protocol (ms_device, 0,0);
usbdi_set_ idle(ms_device,0,0,0);
usbdi_interrupt_req(ms_device,edesc.bEndpointAddress,dat);

}
void ms_irqg(void)
{
int i = 0;
char buf[10];
DPRINTF (1, ("irg running"));
memcpy (buf,dat,8);
if (buf[0] & 1 << 0)
printf("\nRight button clicked");
if (buf[0] & 1 << 1)
printf("\nLeft button clicked");
if (buf[0] & 1 << 2)
printf("\nMiddle button clicked");
printf("\n (x: %d,y: %d)",buf[l],buf[2]);
DPRINTF (1, ("irg done"));
}
void ms_device_ dettached(void)
{
/* Handle dettached case */
DPRINTF (1, ("HID USB mouse dettached"));
}

Division Of Computer Science School of Engineering

56

USB Subsystem For Minix 3

Appendix 3

USBD memory management

USB driver memory management routines.

These should be used instead of the standard memory management routines,
by the drivers that is suppose to communicate with USBD and layer below,
these guarantee that we get a contigious memory chunks.

* Ok kR ok R

usbdmem.o could be linked to other drivers for the purpose.
*

*/

#include "usbdmem.h"

/* Allocates 4K / 64K page and fille up usbd page information */
int usbd _init page(size_t struct_size, int pageflag, struct usbd page *page)
{

int cnt;

if (page == NULL) {
DPRINTF (1, ("NULL reference caught"));
return EINVAL;

}

switch (pageflag) {

case A4K:
page->size = I386_PAGE_SIZE;
break;

case A64K:
page->size = 64 * 1024;
break;

case A4K_ALIGN16:
page->per_object_len = ALIGN16;
page->size = I386_PAGE_SIZE;
pageflag = A4K;
break;

case A64K_ALIGN16:
page->per_object_len = ALIGN16;
page->size = 64 * 1024;
pageflag = A64K;

break;
default:

DPRINTF (1, ("unknown page flag"));

return ENOMEM;
}
if (page->per_object_len != HC_DEV_FLAG)

if (!

(page->vir_start =
(vir_bytes *) alloc_contig(page->size, pageflag,
&page->phys_start)))
return ENOMEM;

if (page->per_object_len == ALIGN16) {

cnt = (struct_size / 16);

struct_size = (cnt * 16) >= struct_size ? (cnt * 16) : ((cnt + 1) * 16);
}
DPRINTF (0, ("page->per_object_len %d", struct_size));
page->per_object_len = struct_size;
page->capacity = (page->size / page->per_ object_len);
page->filled cnt = 0;
page->next_free = (u8_t *) page->vir_start;

page->dealloc_start = NULL;

DPRINTF(0, ("\n Page info\n Page size:%d\n Object len: %d\n"
"\n Capacity:%d\n Phys: 0x%08x\n Vir: 0x%08x\n",
page->size, page->per_ object_len, page->capacity,
page->phys_start, page->vir_ start));

return OK;

}

/* Free the page allocated by the init_this_page() */
void usbd_free_page(struct usbd_page *this_page)

{
int r = 0;
if (this_page == NULL) {
DPRINTF(1, ("NULL reference caught"));
return;
}

if ((r = munmap(this_page->vir_start, this_page->size)) != OK)
DPRINTF (1, ("usbdmem: munmap failed %d\n", r));

DPRINTF (O,
("freed page vir %08x phys %08x", this_page->vir_start,
this_page->phys_start));

Division Of Computer Science School of Engineering

USB Subsystem For Minix 3

b

/* Once we have the page allocated we virtually allocate
* within the page with usbd page->per_object_len chunks
* as per request ,its called const beacause it allocate
* predefined size.

*/
void *usbd_const_alloc(struct usbd page *this_ page)
{
vir_bytes *allocated;
u8_t *phys_addr;

if (this_page == NULL) {
DPRINTF (1, ("NULL reference caught"));
return NULL;

}

/* we use u8_t instead of phys_bytes for the pointer arithmetic. */
phys_addr = (u8_t *) this_page->phys_start;
DPRINTF (0, ("usbd_const_alloc()"))

DPRINTF(0, ("Page index %d", this_page->filled cnt));

if (this_page->capacity == this_page->filled_cnt) {
DPRINTF(1, ("usbd const_alloc() NOMEM"));
return NULL;

}

/* if we have any deallocted addresses then use them */

if (this_page->dealloc_start != NULL) {
allocated = (vir_bytes *) this_page->dealloc_start;
this_page->dealloc_start = this_page->dealloc_start->next;

} else {
allocated = (vir_bytes *) this_page->next_free;
this_page->next_ free += this_ page->per_object_len;

}
this_page->filled cnt++;

DPRINTF(0, ("allocated 0x%08x", allocated));
DPRINTF (0, ("next free 0x%08x", this_page->next free));

DPRINTF (0, ("Space left %d", this_page->capacity - this_page->filled cnt));

memset(allocated, 0, this_page->per object_len);

return allocated;

/* This procedure is tricky it virtually deallocates the instances allocated
* by usbd_const_alloc() keep the list of the deallocated addresses from the
* page,trick part is the each instance of dealloc_list use the currently
* deallocated space for its own data structure.

*/
void usbd_const_dealloc(struct usbd_page *this_page, void *page_chunk)
{
struct dealloc_list *start = this_page->dealloc_start;
struct dealloc_list *dealloc_new = page_chunk;

DPRINTF (0, ("usbd const_dealloc"));

if (this_page == NULL || page_chunk == NULL) {
DPRINTF (1, ("NULL reference caught"));
return;

}

this_page->filled_cnt--;

if (this_page->dealloc_start == NULL) {

this_page->dealloc_start = dealloc_new;
this_page->dealloc_start->next = NULL;

} else {
dealloc_new->next = this_page->dealloc_start;
this_page->dealloc_start = dealloc_new;
}
if (0)
while (start != NULL) {
DPRINTF(1, ("\n Dealoced %08x", start));
start = start->next;
}
DPRINTF (0, ("deallocated 0x%08x", page_chunk));
}
/

*
* Allocate arbitary size chunks to a 4K page this is sort
* of improper use of memory so this must not be used

* extensively any address from drivers communicating with
* USBD must use this as contigious memory chunk, this

* is a prerequisite for certain controllers below.

*/

void *usbd var_alloc(int size)

{

vir_bytes *allocated;

Division Of Computer Science School of Engineering

58

USB Subsystem For Minix 3

phys_bytes null;

if (size > I386_PAGE_SIZE)
return NULL;
allocated = (vir_bytes *) alloc_contig(size, AC_ALIGN4K, &null);
if (allocated == NULL)
return NULL;
DPRINTF (0, ("allocated vir %08x", allocated));
return allocated;

}
void usbd_var_dealloc(void *addr)
{
int r = 0;
vir_bytes *vaddr;
if (addr == NULL) {
DPRINTF (1, ("NULL reference caught"));
return;
}
vaddr = (vir_bytes *) addr;
if ((r = munmap(vaddr, I386_PAGE_SIZE)) != OK) {
DPRINTF (1, ("munmap failed %d\n", r));
return;
}
DPRINTF(0, ("deallocated vir %08x", vaddr));
}
phys_bytes usbd vir_to_phys(void *vir addr)
{
phys_bytes phys_addr;
int r;
if (vir_addr == NULL) {
DPRINTF (1, ("NULL reference caught"));
return EINVAL;
}
/* Find the physical address from the virtual one
* NOTE: since SELF is given as endpoint number usbdmem.o
* should be linked to any driver trying to use these. Any
* sort of shared approach may not give required result.
*/
r = sys_umap(SELF, VM D, (vir_bytes) vir_addr, sizeof(phys_bytes),
&phys_addr);
if (r != OK) {
DPRINTF (1, ("sys_umap failed for proc %d vir addr 0x%x", SELF,vir_ addr));
return EINVAL;
}
return phys_addr;
}

/* Return the free bit index/offset in the given map */
int next free bit(bitmap t map)
{
int offset = 0;
while (offset < 128) {
if (!(MAP_ISSET BIT(map, offset)))
break;
offset++;
}

return offset;

Division Of Computer Science School of Engineering

59

USB Subsystem For Minix 3

Appendix 4

A simplified event trace diagram of the USB stack

LHCI=HY

USBD HD
Running Running Miry
_:::||ncl_tlru_én:tt) |
Eseki) B
P
uhei b starko) .
Ly
uhci_register_ho_ushdor
HCZUSED, REGISTER
q:'usbu,reaI.st.er'_lnct) == gk
d::buihnl_r‘eslster‘_lnct'; 1= Ok
([unstanlestill avake for b events)
HC2USED_HC_CERGISTER
_i:PuBth_tIerogl:sLer_llc()
HC2USED |
Zushd_euent_neu_deuicef)
[stetus signel =4 5 |
{ e L, Sean_portst
i:buhcl_rh_part_resetcpnrl.\
| o dnterTupt.
Bl
‘i’unm_hu_fsl‘u
HCZUSBD_DEWICE_DISCORNECTED
e uzbil_deal foc_device_indports
USBOZHC_CONTROL_REQ
::uhni_cnntrn]_nsgf}

scheculs conbral sfer

oo dnteeeut

L 4

.
4

—_— i

rezsult of control xfer

A A

. --interrapt. ..

uhct _hu_zeri)
™ statuz of conzroler =fer execution

USBOZALL_SIGTERM

[unstable.still avake for hu events J
SIGTERN

R —

‘:’uhcl_uru_e:iu ¥

Division Of Computer Science School of Engineering

60

	CHAPTER 1

