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The Modern Computer System
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Figure 1.1 A computer system consists of hardware,
system programs, and application programs.
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What Is an Operating System?

The operating system has two basic
functions of the operating system

e |tis an extended machine or virtual
machine

— Easier to program than the underlying
hardware

* |tIs aresource manager
— Shares resources in time and space
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Operating System Generations

 Generation 1 (1945 — 55)
Vacuum tubes and plugboards

e Generation 2 (1955 — 65)
Transistors and batch systems

e Generation 3 (1965 — 80)
|ICs and multiprogramming

e Generation 4 (1980 — Present)
Personal computers
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Early Batch System (1)
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Figure 1-2. An early batch system. (a) Programmers bring
cards to 1401. (b)1401 reads batch of jobs onto tape.
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Early Batch System (2)
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Figure 1-2. An early batch system. (c) Operator carries input
tape to 7094. (d) 7094 does computing.
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Early Batch System (3)
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Figure 1-2. An early batch system. (e) Operator carries output
tape to 1401. (f) 1401 prints output.
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Early Batch System (4)
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Figure 1-3. Structure of a typical FMS job.
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Multiprogramming

Job 3
Job 2
~y  Memory
Job 1 -/ partitions
Operating
system

Figure 1-4. A multiprogramming system
with three jobs in memory.
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Processes

Figure 1-5. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.
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File Systems (1)
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Figure 1-6. A file system for a university department.
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File Systems (2)

Figure 1-7. (a) Before mounting, the files on drive O are not
accessible. (b) After mounting, they are part of the file
hierarchy.
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File Systems (3)
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Figure 1-8. Two processes connected by a pipe.
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System Calls (1)

Process Management

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts) Wait for a child to terminate

s = wait( &status) Old version of waitpid

s = execve(name, argv, envp) Replace a process core image

exit(status) Terminate process execution and return status

size = brk(addr) Set the size of the data segment

pid = getpid() Return the caller’s process id

pid = getpgrp() Return the 1d of the caller’s process group

pid = setsid() Create a new session and return its process group id
| = ptrace(req, pid, addr, data) Used for debugging

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.
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System Calls (2)

Signals

s = sigaction(sig, &act, &oldact)

s = sigreturn(&context)

s = sigprocmask(how, &set, &old)
s = sigpending(set)

s = sigsuspend(sigmask)

s = kill(pid, sig)

residual = alarm(seconds)

s = pause()

Define action to take on signals

Return from a signal

Examine or change the signal mask

Get the set of blocked signals

Replace the signal mask and suspend the process
Send a signal to a process

Set the alarm clock

Suspend the caller until the next signal

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.
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System Calls (3)

File Management

fd = creat(name, mode) Obsolete way to create a new file

fd = mknod(name, mode, addr) Create a regular, special, or directory i-node
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

pos = Iseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

s = fstat(fd, &buf) Get a file’s status information

fd = dup(fd) Allocate a new file descriptor for an open file
s = pipe(&Id[0]) Create a pipe

s = 1octl(fd, request, argp) Perform special operations on a file

s = access(name, amode) Check a file’s accessibility

s = rename(old, new) Give a file a new name

s = fentl(fd, emd, ...) File locking and other operations

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.
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System Calls (4)

Dir. & File System Mgmt.

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(namel, name2) Create a new entry, name2, pointing to namel
s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

s = sync() Flush all cached blocks to the disk

s = chdir(dirname) Change the working directory

s = chroot(dirname) Change the root directory

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.
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System Calls (5)

Protection
s = chmod(name, mode) Change a file’s protection bits
uid = getuid() Get the caller’s uid
o1d = getgid() Get the caller’s gid
s = setutd(uid) Set the caller’s uid
s = setgid(gid) Set the caller’s gid
s = chown(name, owner, group) Change a file’s owner and group
oldmask = umask(complmode) Change the mode mask

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.
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System Calls (6)

Time Management

seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

s = stime(tp) Set the elapsed time since Jan. 1, 1970

s = utime(file, timep) Set a file’s "last access" time

s = times(buffer) Get the user and system times used so far

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8



The fork Call in the Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt( ); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* walit for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}

Figure 1-10. A stripped-down shell. Throughout this book, TRUE
IS assumed to be defined as 1.
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Processes

Address (hex)
FFFF

0000

Figure 1-11. Processes have three segments: text, data, and
stack. In this example, all three are in one address space, but
separate instruction and data space is also supported.
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System Calls for File Management (1)

struct stat {

};

short st_dev;
unsigned short st_ino;
unsigned short st_mode;
short st_nlink;

short st_uid:;

short st_gid;

short st_rdev;

long st_size;

long st_atime;

long st_mtime;

long st_ctime;

/* device where i-node belongs */
/* I-node number */

/* mode word */

/* number of links */

/* user id */

/* group id */

/* major/minor device for special files */
/* file size */

/* time of last access */

/* time of last modification */

/* time of last change to i-node */

Figure 1-12. The structure used to return information for the stat
and fstat system calls. In the actual code, symbolic names
are used for some of the types.
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System Calls for File Management (2)

#define STD_INPUT O /* file descriptor for standard input */
#define STD_OUTPUT 1 /* file descriptor for standard output */
pipeline(process1, process2)
char *process1, *process2; /* pointers to program names */
{

int fd[2];

pipe(&fd[0]); /* create a pipe */

if (fork() '=0) {
/* The parent process executes these statements. */

close(fd[0]); /* process 1 does not need to read from pipe */
close(STD _OUTPUT); /* prepare for new standard output */
dup(fd[1]); /* set standard output to fd[1] */
close(fd[1]); /* this file descriptor not needed any more */
execl(processi, processi, 0);

} else {

Figure 1-13. A skeleton for setting up a two-process pipeline.
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System Calls for File Management (3)

/* The child process executes these statements. */

close(fd[1]); /* process 2 does not need to write to pipe */
close(STD _INPUT); /* prepare for new standard input */
dup(fd[0]): /* set standard input to fd[0] */
close(fd[0]); /* this file descriptor not needed any more */
execl(process2, process2, 0);
}
}

Figure 1-13. A skeleton for setting up a two-process pipeline.
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System Calls for Directory Management (1)

fusr/ast fusr/jim fusr/ast fusr/jim
16 | mail 31| bin 16 | mail 31| bin
81 | games 70 | memo 81| games 70 | memao
40 | test 59| f.c. 40 | test 59 | f.c.
38 | prog1 70| note 38 | prog1

(a) (b)

link(“/usr/jim/mema”,”/usr/ast/note”);

Figure 1-14. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.
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System Calls for Directory Management (2)

IR

bin dev liby mnt usr

mount(“/dev/cdrom0”,”/mnt”,0);

Figure 1-15. (a) File system before the mount.
(b) File system after the mount.
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Operating System Structure

Address
OxFFFFFFFF
Return to caller .
Library
Trap to the kernel procedure
5| Put code for read in register read
10
4
User space
P < Increment SP 11
- Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
(5] 9
f 7
L
Kernel space . 70 8 | Sys call
(Operating system) < SSLe - “| handler

Figure 1-16. The 11 steps in making the system call
read(fd, buffer, nbytes).
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Basic Structure for Operating
System

1. A main program that invokes the
requested service procedure

2. A set of service procedures that
carry out the system calls

3. A set of utility procedures that help
the service procedures
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Layered Systems (1)

Main
procedure

Service
procedures

Utility
procedures

Figure 1-17. A simple structuring model for a monolithic system.
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Layered Systems (2)

Layer Function

5 The operator

User programs

Input/output management

Operator-process communication

Memory and drum management

o | = N ||~

Processor allocation and multiprogramming

Figure 1-18. Structure of the THE operating system.
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Virtual Machines

Virtual 370s

HH_,.F/-”‘““H
I | t=~| System calls here

I/O instructions here — =+ CMS CMS CMS *-t Trap here
Trap here —p= VM/370

370 Bare hardware

Figure 1-19. The structure of VM/370 with CMS.
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Client-Server Model (1)

Client Client Frocess Terminal File Memory
Process Process server server server sarver
Microkernel \

Client obtains
service by

sending messages
to server processes

Figure 1-20. The client-server model.

- User mode

A,

» Kernel mode
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Client-Server Model (2)

Machine 1 Machine 2 Machine 3 Machine 4
Client » L File server Process server Terminal server
.o Kermnel Kernel Kernel Kernel

|~ | | |

\ Network

Message from
client to server

Figure 1-21. The client-server model in a distributed system.
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