OPERATING SYSTEMS

DESIGN AND IMPLEMENTATION
Third Edition
ANDREW S. TANENBAUM
ALBERT S. WOODHULL

Chapter 1
Introduction

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Modern Computer System

Banking Airline Web . Application brograms
system reservation browser PP prog
. : Command
Compilers Editors interpreter | | System
programs
Operating system
Machine language
Microarchitecture > Hardware

Physical devices

Figure 1.1 A computer system consists of hardware,
system programs, and application programs.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

What Is an Operating System?

The operating system has two basic
functions of the operating system

e |tis an extended machine or virtual
machine

— Easier to program than the underlying
hardware

* |tIs aresource manager
— Shares resources in time and space

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Operating System Generations

 Generation 1 (1945 — 55)
Vacuum tubes and plugboards

e Generation 2 (1955 — 65)
Transistors and batch systems

e Generation 3 (1965 — 80)
|ICs and multiprogramming

e Generation 4 (1980 — Present)
Personal computers

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Early Batch System (1)

Tape
drive
Card
3 reader g'
H — 1 | A
i
||H 1401
|
AN
(a) (b)

Figure 1-2. An early batch system. (a) Programmers bring
cards to 1401. (b)1401 reads batch of jobs onto tape.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Early Batch System (2)

System
Input tape Qutput
iy tape 7 \f tape
[gg:' g
I'I‘::}ﬂl'l < o
|
a' it
L
:J; 7094
/)
UAN
(c) (d)

Figure 1-2. An early batch system. (c) Operator carries input
tape to 7094. (d) 7094 does computing.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Early Batch System (3)

(A X e
E Printer

T 11

k;“.ﬂr) 1401

!

(&) (f)

Figure 1-2. An early batch system. (e) Operator carries output
tape to 1401. (f) 1401 prints output.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Early Batch System (4)

/ SEND

S
A Data for program

/SLOAD P
£ /
A Fortran program 7 /
y
/ $FORTRAN
/.JDB 10,6610802, MARVIN TANENBAUM 7
//

Figure 1-3. Structure of a typical FMS job.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multiprogramming

Job 3
Job 2
~y Memory
Job 1 -/ partitions
Operating
system

Figure 1-4. A multiprogramming system
with three jobs in memory.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Processes

Figure 1-5. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

File Systems (1)

Hoot directory

o ey
Students Faculty
-
/ ~
Robbert Matty { Leo Prof.Brown Prof.Green Prof. White
 d
I L~ /"
/ N /
J / \ f.f \‘\ / R /
Yy Y N Y
Courses Papers Grants Committees
/ i i X

)

\ /

NTNY:

SOSP COST-11

CsS101 C38105

Files

Figure 1-6. A file system for a university department.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

File Systems (2)

Figure 1-7. (a) Before mounting, the files on drive O are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

File Systems (3)

Frocess

A

Pipe

FProcess

B

Figure 1-8. Two processes connected by a pipe.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (1)

Process Management

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts) Wait for a child to terminate

s = wait(&status) Old version of waitpid

s = execve(name, argv, envp) Replace a process core image

exit(status) Terminate process execution and return status

size = brk(addr) Set the size of the data segment

pid = getpid() Return the caller’s process id

pid = getpgrp() Return the 1d of the caller’s process group

pid = setsid() Create a new session and return its process group id
| = ptrace(req, pid, addr, data) Used for debugging

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (2)

Signals

s = sigaction(sig, &act, &oldact)

s = sigreturn(&context)

s = sigprocmask(how, &set, &old)
s = sigpending(set)

s = sigsuspend(sigmask)

s = kill(pid, sig)

residual = alarm(seconds)

s = pause()

Define action to take on signals

Return from a signal

Examine or change the signal mask

Get the set of blocked signals

Replace the signal mask and suspend the process
Send a signal to a process

Set the alarm clock

Suspend the caller until the next signal

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (3)

File Management

fd = creat(name, mode) Obsolete way to create a new file

fd = mknod(name, mode, addr) Create a regular, special, or directory i-node
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

pos = Iseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

s = fstat(fd, &buf) Get a file’s status information

fd = dup(fd) Allocate a new file descriptor for an open file
s = pipe(&Id[0]) Create a pipe

s = 1octl(fd, request, argp) Perform special operations on a file

s = access(name, amode) Check a file’s accessibility

s = rename(old, new) Give a file a new name

s = fentl(fd, emd, ...) File locking and other operations

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (4)

Dir. & File System Mgmt.

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(namel, name2) Create a new entry, name2, pointing to namel
s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

s = sync() Flush all cached blocks to the disk

s = chdir(dirname) Change the working directory

s = chroot(dirname) Change the root directory

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (5)

Protection
s = chmod(name, mode) Change a file’s protection bits
uid = getuid() Get the caller’s uid
o1d = getgid() Get the caller’s gid
s = setutd(uid) Set the caller’s uid
s = setgid(gid) Set the caller’s gid
s = chown(name, owner, group) Change a file’s owner and group
oldmask = umask(complmode) Change the mode mask

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls (6)

Time Management

seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

s = stime(tp) Set the elapsed time since Jan. 1, 1970

s = utime(file, timep) Set a file’s "last access" time

s = times(buffer) Get the user and system times used so far

Figure 1-9. The MINIX system calls. fd is a file descriptor;
and n is a byte count.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The fork Call in the Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* walit for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}

Figure 1-10. A stripped-down shell. Throughout this book, TRUE
IS assumed to be defined as 1.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Processes

Address (hex)
FFFF

0000

Figure 1-11. Processes have three segments: text, data, and
stack. In this example, all three are in one address space, but
separate instruction and data space is also supported.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls for File Management (1)

struct stat {

};

short st_dev;
unsigned short st_ino;
unsigned short st_mode;
short st_nlink;

short st_uid:;

short st_gid;

short st_rdev;

long st_size;

long st_atime;

long st_mtime;

long st_ctime;

/* device where i-node belongs */
/* I-node number */

/* mode word */

/* number of links */

/* user id */

/* group id */

/* major/minor device for special files */
/* file size */

/* time of last access */

/* time of last modification */

/* time of last change to i-node */

Figure 1-12. The structure used to return information for the stat
and fstat system calls. In the actual code, symbolic names
are used for some of the types.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls for File Management (2)

#define STD_INPUT O /* file descriptor for standard input */
#define STD_OUTPUT 1 /* file descriptor for standard output */
pipeline(process1, process2)
char *process1, *process2; /* pointers to program names */
{

int fd[2];

pipe(&fd[0]); /* create a pipe */

if (fork() '=0) {
/* The parent process executes these statements. */

close(fd[0]); /* process 1 does not need to read from pipe */
close(STD _OUTPUT); /* prepare for new standard output */
dup(fd[1]); /* set standard output to fd[1] */
close(fd[1]); /* this file descriptor not needed any more */
execl(processi, processi, 0);

} else {

Figure 1-13. A skeleton for setting up a two-process pipeline.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls for File Management (3)

/* The child process executes these statements. */

close(fd[1]); /* process 2 does not need to write to pipe */
close(STD _INPUT); /* prepare for new standard input */
dup(fd[0]): /* set standard input to fd[0] */
close(fd[0]); /* this file descriptor not needed any more */
execl(process2, process2, 0);
}
}

Figure 1-13. A skeleton for setting up a two-process pipeline.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls for Directory Management (1)

fusr/ast fusr/jim fusr/ast fusr/jim
16 | mail 31| bin 16 | mail 31| bin
81 | games 70 | memo 81| games 70 | memao
40 | test 59| f.c. 40 | test 59 | f.c.
38 | prog1 70| note 38 | prog1

(a) (b)

link(“/usr/jim/mema”,”/usr/ast/note”);

Figure 1-14. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

System Calls for Directory Management (2)

IR

bin dev liby mnt usr

mount(“/dev/cdrom0”,”/mnt”,0);

Figure 1-15. (a) File system before the mount.
(b) File system after the mount.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Operating System Structure

Address
OxFFFFFFFF
Return to caller .
Library
Trap to the kernel procedure
5| Put code for read in register read
10
4
User space
P < Increment SP 11
- Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
(5] 9
f 7
L
Kernel space . 70 8 | Sys call
(Operating system) < SSLe - “| handler

Figure 1-16. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Basic Structure for Operating
System

1. A main program that invokes the
requested service procedure

2. A set of service procedures that
carry out the system calls

3. A set of utility procedures that help
the service procedures

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Layered Systems (1)

Main
procedure

Service
procedures

Utility
procedures

Figure 1-17. A simple structuring model for a monolithic system.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Layered Systems (2)

Layer Function

5 The operator

User programs

Input/output management

Operator-process communication

Memory and drum management

o | = N ||~

Processor allocation and multiprogramming

Figure 1-18. Structure of the THE operating system.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Virtual Machines

Virtual 370s

HH_,.F/-”‘““H
I | t=~| System calls here

I/O instructions here — =+ CMS CMS CMS *-t Trap here
Trap here —p= VM/370

370 Bare hardware

Figure 1-19. The structure of VM/370 with CMS.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Client-Server Model (1)

Client Client Frocess Terminal File Memory
Process Process server server server sarver
Microkernel \

Client obtains
service by

sending messages
to server processes

Figure 1-20. The client-server model.

- User mode

A,

» Kernel mode

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Client-Server Model (2)

Machine 1 Machine 2 Machine 3 Machine 4
Client » L File server Process server Terminal server
.o Kermnel Kernel Kernel Kernel

|~ | | |

\ Network

Message from
client to server

Figure 1-21. The client-server model in a distributed system.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

	OPERATING SYSTEMS�DESIGN AND IMPLEMENTATION�Third Edition�ANDREW S. TANENBAUM�ALBERT S. WOODHULL��Chapter 1�Introduction
	The Modern Computer System
	What Is an Operating System?
	Operating System Generations
	Early Batch System (1)
	Early Batch System (2)
	Early Batch System (3)
	Early Batch System (4)
	Multiprogramming
	Processes
	File Systems (1)
	File Systems (2)
	File Systems (3)
	System Calls (1)
	System Calls (2)
	System Calls (3)
	System Calls (4)
	System Calls (5)
	System Calls (6)
	The fork Call in the Shell
	Processes
	System Calls for File Management (1)
	System Calls for File Management (2)
	System Calls for File Management (3)
	System Calls for Directory Management (1)
	System Calls for Directory Management (2)
	Operating System Structure
	Basic Structure for Operating System
	Layered Systems (1)
	Layered Systems (2)
	Virtual Machines
	Client-Server Model (1)
	Client-Server Model (2)

