OPERATING SYSTEMS

DESIGN AND IMPLEMENTATION
Third Edition
ANDREW S. TANENBAUM
ALBERT S. WOODHULL

Chapter 3
Input/Output

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

/O Devices

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scanner 400 KB/sec
Digital camcorder 4 MB/sec
52x CD-ROM 8 MB/sec
FireWire (IEEE 1394) 50 MB/sec
USB 2.0 60 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
Gigabit Ethernet 125 MB/sec
Serial ATA disk 200 MB/sec
SCSI Ultrawide 4 disk 320 MB/sec
PCI bus 528 MB/sec

Figure 3-1. Some typical device, network, and bus data rates.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device Controllers

Monitor

Hard
Keyboard C DL{%%M disk drive

. Hard
Video Keyboard USB ;
CPU Memory disk
controller controller controller Wk
Bus

Figure 3-2. A model for connecting the CPU, memory,
controllers, and 1/O devices.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory-Mapped I/O

Two address One address space Two address spaces

OxFFFF... Memory

VO ports

/

Figure 3-3. (a) Separate I/O and memory space.
(b) Memory-mapped I/O. (c) Hybrid.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Direct Memory Access (DMA)

@‘a Drive

1. CPU

programs DMA Disk Main
CPU the DMA controller controller memory
controller e Buffer
e
e S
4. Ack A
.''.'_'_,_l-l—l—'_‘—lm-._‘.|
Vs -
+ I | +
Interrupt when 2. DMA requests
done transfer to memory _ 3. Data transferred |
-— Bus

Figure 3-4. Operation of a DMA transfer.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Goals of the I/O Software

User-level /O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Figure 3-5. Layers of the I/O software system.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device-Independent I/O Software

Uniform interfacing for device drivers
Buffering

Error reporting

Allocating and releasing dedicated devices
Providing a device-independent block size

Figure 3-6. Functions of the device-independent I/O software.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Uniform Interfacing for Device Drivers

Operating system Operating system
Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver

(a) (b)

Figure 3-7. (a) Without a standard driver interface.
(b) With a standard driver interface.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

User-Space |I/O Software

Layer

IO
IO functions

11O

——
request

User processes

™\

/ reply

Make /O call; format I/O; spooling

|
* Device-independent

software

A

Naming, protection, blocking, buffering, allocation

|
'

Device drivers

Set up device registers; check status

Interrupt handlers

*.‘
:

Wake up driver when /O completed

Hardware

Perform I/O operation

Figure 3-8. Layers of the I/O system and
the main functions of each layer.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Resources

The sequence of events required to use a
resource:

1. Request the resource.

2. Use the resource.
3. Release the resource.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Definition of Deadlock

A set of processes Is deadlocked if each
process in the set is waiting for an event
that only another process in the set can
cause.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Conditions for Deadlock

Mutual exclusion
Hold and wait
No preemption
Circular walit

> w e

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Modeling

HE)

T/@\U
A

Figure 3-9. Resource allocation graphs. (a) Holding a resource.
(b) Requesting a resource. (c) Deadlock.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Handling Strategies

1. Ignore the problem altogether
2. Detection and recovery

3. Avoidance by careful resource
allocation

4. Prevention by negating one of the four
necessary conditions

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Avoidance (1)

1. Arequests R
2. B requests S
3.Crequests T
4. Arequests S
5. B requests T
6. C requests R
deadlock

(d)

Request R
Request S
Release R
Release S

(a)

(?@

R S

T

Request S
Request T
Release S
Release T

(b)

(e)

T

Request T
Request R
Release T
Release R

(c)

R

T

ole
i

(h)

T

Q09 820 AR

5

g

(i)

R

S T

()

Figure 3-10. An example of how deadlock occurs and

how It can be avoided.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Avoidance (2)
C? »©® ©

1. Arequests R
2.Crequests T
3. Arequests S
4. C requests R
5. Areleases R
6. Areleases S
no deadlock

(K)

®E O

S T R

1\

S

T

R

(m)

R

S

T

(n)

® ® @ﬁ)

- {0

R

S

T

R

S

T

(P)

(q)

Figure 3-10. An example of how deadlock occurs and

how It can be avoided.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Prevention (1)

1. Imagesetter @

2. Scanner
3. Plotter
4. Tape drive : i

5. CD Rom drive

(@)

Figure 3-11. (a) Numerically ordered resources.
(b) A resource graph.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Deadlock Prevention (2)

Condition Approach
Mutual exclusion | Spool everything
Hold and wait Request all resources initially
No preemption Take resources away
Circular wait Order resources numerically

Figure 3-12. Summary of approaches to deadlock prevention.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Banker’s Algorithm for a Single

Resource

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
C 0 -4 C 2 4 C 2 -4
D 0 7 D 4 7 D 2 7

Free: 10 Free: 2 Free: 1
(a) (b) (c)

Figure 3-13. Three resource allocation states:
(a) Safe. (b) Safe. (c) Unsafe.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Resource Trajectories

[® |, (Both processes
Printer | | finished)
o e
Plotter '° ; m
p ’ ' tErH,... : F'a l4

Figure 3-14. Two process resource trajectories.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Banker’s Algorithm for Multiple

& &
I‘_;Er] R &
& § & & C'@ F & @ & .0
FICASIN & &s
Al3 |01 1 Al 11010 E = (6342)
P = (5322)
BEJ10]11]10]0 E1O 1112 A = (1020)
Cli1l11111]0 Cl13[1]101]0
Dy1 111011 DyO 1O 110
EJO]10]10]0 El12111110
Hesources assigned Hesources still needed

Figure 3-15. The banker’s algorithm with multiple resources.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Safe State Checking Algorithm

Look for a row, R, whose unmet resource needs are all
smaller than or equal to A. If no such row exists, the
system will eventually deadlock since no process can run
to completion.

Assume the process of the row chosen requests all the
resources it needs (which is guaranteed to be possible)
and finishes. Mark that process as terminated and add all
Its resources to the A vector.

Repeat steps 1 and 2 until either all processes are marked
terminated, in which case the initial state was safe, or until
a deadlock occurs, in which case it was not.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device Drivers In

Process-structured system

User
%a
5\ \\

Processes

1—6 are request
and reply messages
between four
independent
processes.

(a)

User space

Kernel
space

MINIX 3 (1)

Monolithic system

A process
/

User-
space
part

File

Device
driver

The user-space part
calls the kernel-space part
by trapping. The file system
calls the device driver as a
procedure. The entire
operating system is part
of each process

(b)

Figure 3-16. Two ways of structuring user-system communication.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device Drivers in MINIX 3 (2)

Requests
Field Type | Meaning
m.m_type int Operation requested
m.DEVICE int Minor device to use
m.PROC_NR | int Process requesting the 1/O
m.COUNT int Byte count or ioctl code
m.POSITION | long Position on device
m.ADDRESS | char* | Address within requesting process
Replies
Field Type | Meaning
m.m_type int Always DRIVER_REPLY

m.REP_PROC_NR | int

Same as PROC _NR in request

m.REP_STATUS

int

Bytes transferred or error number |

Figure 3-17. Fields of the messages sent by the file system to the
block device drivers and fields of the replies sent back.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device-Independent I/O Software In
MINIX 3

message mess; /* message buffer */

void io_driver() {

initialize(); /* only done once, during system init. */
while (TRUE) {
receive(ANY, &mess); /* wait for a request for work */
caller = mess.source; /* process from whom message came */
switch(mess.type) {
case READ: rcode = dev_read(&mess); break;

case WRITE: rcode = dev_write(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */

default: rcode = ERROR;
}
mess.type = DRIVER _REPLY;
mess.status = rcode; /* result code */
send(caller, &mess); /* send reply message back to caller */

}
}

Figure 3-18. Outline of the main procedure of an 1/O device driver.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Block Device Drivers in MINIX 3

message mess; /* message buffer */

void shared_io_task(struct driver_table *entry_points) {

/* initialization is done by each task before calling this */
while (TRUE) {

receive(ANY, &mess);
caller = mess.source;
switch(mess.type) {

case READ: rcode = (*entry_points—>dev_read)(&mess); break;
case WRITE: rcode = (*entry_points—>dev_write)(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */
default: rcode = ERROR;

}

mess.type = TASK_REPLY;

mess.status = rcode; /* result code */

send(caller, &mess);

}
}

Figure 3-19. A shared I/O task main procedure using indirect calls.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device Driver Operations

OPEN

CLOSE

READ

WRITE

|OCTL
SCATTERED 10

o O A b=

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

RAM Disk Hardware and Software

Main Memory (RAM)

User
programs
RAM)
disk | . RAM disk block 1
~<— Read and writes of RAM block 0
use this memory
Operating
system

Figure 3-20. A RAM disk.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Disk Software

Read/Write timing factors:
1. Seektime

2. Rotational delay
3. Data transfer time

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Disk Arm Scheduling Algorithms (1)

Initial Pending
position requests

IIII'- a-"fflll".l

A\
X X |IX|X X X IX

0 5 10 15 20 25 30 35 Cylinder

é— Sequence of seeks

] 11

Figure 3-21. Shortest Seek First (SSF) disk scheduling algorithm.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Disk Arm Scheduling Algorithms (2)

Initial
position
\
A
X X| XX X Xl |X
0 5 10 15 20 25 30 35 Cylinder
i)
- \\kgf}quence of seeks
=
T e —— .

/

Figure 3-22. The elevator algorithm for scheduling disk requests.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Common Hard Drive Errors

Programming error
- request for nonexistent sector

. Transient checksum error
- caused by dust on the head

. Permanent checksum error
- disk block physically damaged

. Seek error
- the arm sent to cylinder 6 but it went to 7

. Controller error
- controller refuses to accept commands

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Hard Disk Driver in MINIX 3 (1)

Register Read Function Write Function
0 Data Data
1 Error Write Precompensation
2 Sector Count Sector Count
3 Sector Number (0-7) Sector Number (0-7)
4 Cylinder Low (8-15) Cylinder Low (8-15)
5 Cylinder High (16-23) Cylinder High (16-23)
6 Select Drive/Head (24-27) | Select Drive/Head (24-27)
7 Status Command

(a)

Figure 3-23. (a) The control registers of an IDE hard disk
controller. The numbers in parentheses are the bits of the
logical block address selected by each register in LBA mode.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Hard Disk Driver in MINIX 3 (2)

7 6 5 4 3 2 1 0
1 | LBA 1 D | HS3 | HS2 | HS1 | HSO

LBA: 0 = Cylinder/Head/Sector Mode

1 = Logical Block Addressing Mode
D: 0 = master drive

1 = slave drive
HSn: CHS mode: Head select in CHS mode
LBA mode: Block select bits 24 - 27

(b)

Figure 3-23. (b) The fields of the Select Drive/Head register.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Floppy Disk Drive

Characteristics that complicate the
driver:

1. Removable media.

2. Multiple disk formats.
3. Motor control.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminals (1)

Terminals
Memory-mapped RS-232 Network
interface interface interface
Ch_aracter _Bit Glass Intelligent ¥ terminal
oriented oriented tty terminal

Figure 3-24. Terminal types.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminals (2)

Graphics
CPU Memory adapter Video
Video controller
RAM | >
| ————
Bus /* Analog
- Jf ﬁ\ video signal

Parallel port

Figure 3-25. Memory-mapped terminals write
directly into video RAM.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminals (3)

Video BAM Screen
RAM address ABCD i
0123
25 lines
cee x3x2x1x0 | OxBOOAD
e XxDxCxBxA | OxBOOOO Y

—=—160 characters —» —-— B0 characters —»

(a) (a)

Figure 3-26. (a) A video RAM image for the IBM monochrome
display. (b) The corresponding screen.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

RS-232 Terminals

Computer
RS-232
CPU Memory interface Transmit

e UART

=

Recieve

Bus

Figure 3-27. An RS-232 terminal communicates with a computer
over a communication line, one bit at a time. The computer
and the terminal are completely independent.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Input Software (1)

Terminal Terminal
data structure data structure
Central
Terminal buffer pool Terminal
0 /
s e % e

0 < Buffer
2 area for

> terminal 0
3) :

1 4 Buffer
area for
terminal 1

(a) (b)

Figure 3-28. (a) Central buffer pool.
(b) Dedicated buffer for each terminal.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Input Software (2)

Character | POSIX name Comment
CTRL-D EOF End of file

EOL End of line (undefined)
CTRL-H ERASE Backspace one character
CTRL-C INTR Interrupt process (SIGINT)
CTRL-U KILL Erase entire line being typed
CTRL-\ QUIT Force core dump (SIGQUIT)
CTRL-Z SUSP Suspend (ignored by MINIX)
CTRL-Q START Start output
CTRL-S STOP Stop output
CTRL-R REPRINT Redisplay input (MINIX extension)
CTRL-V LNEXT Literal next (MINIX extension)
CTRL-O DISCARD Discard output (MINIX extension)
CTRL-M CR Carriage return (unchangeable)
CTRL-J NL Linefeed (unchangeable)

Figure 3-29. Characters that are handled specially

IN canonical mode.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Input Software (3)

struct termios {

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_Iflag; /* local modes */
speed_t c_ispeed; /* input speed */
speed_t c_ospeed; /* output speed */
cc_t c_cc[NCCS]; /* control characters */

Figure 3-30. The termios structure. In MINIX 3 tc_flag _t

IS a short, speed _tis anint, and cc _tis a char.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Input Software (4)

TIME =0 TIME >0
MIN =0 | Return immediately with whatever | Timer starts immediately. Return with first
is available, 0 to N bytes byte entered or with 0 bytes after timeout

MIN > 0 | Return with at least MIN and up to | Interbyte timer starts after first byte. Return
N bytes. Possible indefinite block. N bytes if received by timeout, or at least
1 byte at timeout. Possible indefinite block

Figure 3-31. MIN and TIME determine when a call to read returns
In noncanonical mode. N is the number of bytes requested.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Output Software (1)

Escape sequence Meaning

ESC [nA Move up n lines

ESC [nB Move down n lines

ESC [nC Move right n spaces

ESC [nD Move left n spaces

ESC [m;nH Move cursor to (y = m, X = n)

ESC [sJ Clear screen from cursor (0 to end, 1 from start, 2 all)

Figure 3-32. The ANSI escape sequences accepted by the
terminal driver on output. ESC denotes the ASCII escape
character (0x1B), and n, m, and s are optional numeric
parameters.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Output Software (2)

Escape sequence Meaning

ESC [sK Clear line from cursor (0 to end, 1 from start, 2 all)

ESC [nL Insert n lines at cursor

ESC [nM Delete n lines at cursor

ESC[nP Delete n chars at cursor

ESC[n@ Insert n chars at cursor

ESC[nm Enable rendition n (0O=normal, 4=bold, 5=blinking, 7=reverse)
ESCM Scroll the screen backward if the cursor is on the top line

Figure 3-32. The ANSI escape sequences accepted by the
terminal driver on output. ESC denotes the ASCII escape
character (0x1B), and n, m, and s are optional numeric
parameters.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminal Driver in MINIX (1)

Terminal driver message types:

1. Read from the terminal (from FS on behalf
of a user process).

2. Write to the terminal (from FS on behalf of
a user process).

3. Setterminal parameters for IOCTL (from
FS on behalf of a user process).

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminal Driver in MINIX (2)

Terminal driver message types (continued):

4. 1/0 occurred during last clock tick (from the
clock interrupt).

5. Cancel previous request (from the file
system when a signal occurs).

6. Open a device.
/. Close a device.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminal
Input (1)

ﬁﬁ

! I'{eyboard
\ Interrupt

Figure 3-33. Read request from the keyboard when no characters
are pending. FSis the file system. TTY is the terminal driver.
The TTY receives a message for every keypress and queues
scan codes as they are entered. Later these are interpreted
and assembled into a buffer of ASCII codes which is copied
to the user process.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Receive message Receive message
from user from clock
viaFS

handle_events

Terminal G
Input (2) <=

Other functions

Coms D Corors >

Other functions

Figure 3-34. Input handling in the terminal driver. The left branch
of the tree is taken to process a request to read characters.
The right branch is taken when a keyboard message is sent
to the driver before a user has requested input.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

tty_task
L i

Terminal
Output (1)

do_write

L
@_EVEMS

)

)

- cons_write

AVAVAV,

Figure 3-35. Major procedures o
used in terminal output. /
The dashed line indicates sy

characters copied directly \
to ramqueue by cons_write, 2

Escape | Special End of line

sequences | characters

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminal Output (2)

Field Meaning
c_start Start of video memory for this console
c_limit Limit of video memory for this console
c_column | Current column (0-79) with O at left
C_row Current row (0-24) with 0 at top
c_cur Offset into video RAM for cursor
c_org Location in RAM pointed to by 6845 base register

Figure 3-36. Fields of the console structure that relate to the
current screen position.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Loadable Keymaps

Scan code | Character | Regular | SHIFT | ALT1 ALT2 | ALT+SHIFT | CTRL
00 none 0 0 0 0 0 0
01 ESC C(T) C([) | CA(T) | CA(T) CA(T) C(T)
02 1 1 L A1) A('1’) Al C('A)
13 = = + A('=") A=) A('+) c(a)
16 q L(q) Q A(q) A(q) A(Q) C(Q)
28 CR/LF C(M) C(M) | CACM) | CACM) CA(M’) C(J)
29 CTRL CTRL CTRL | CTRL CTRL CTRL CTRL
59 F1 F1 SF1 AF1 AF1 ASF1 CF1
127 777 0 0 0 0 0 0

Figure 3-37. A few entries from a keymap source file.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device-Independent Terminal Driver (1)

Field Default values
c_iflag BRKINT ICRNL IXON IXANY
c_oflag | OPOST ONLCR
c_cflag | CREAD CS8 HUPCL
c_lflag ISIG IEXTEN ICANON ECHO ECHOE

Figure 3-38. Default termios flag values.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Device-Independent Termr

iInal Driver (2)

POSIX function | POSIX operation | IOCTL type | IOCTL parameter
tcdrain (none) TCDRAIN (none)

tcflow TCOOFF TCFLOW int=TCOOFF
tcflow TCOON TCFLOW int=TCOON
tcflow TCIOFF TCFLOW int=TCIOFF
tcflow TCION TCFLOW int=TCION
tcflush TCIFLUSH TCFLSH int=TCIFLUSH
tcflush TCOFLUSH TCFLSH int=TCOFLUSH
tcflush TCIOFLUSH TCFLSH int=TCIOFLUSH
tcgetattr (none) TCGETS termios

tcsetattr TCSANOW TCSETS termios

tcsetattr TCSADRAIN TCSETSW | termios

tcsetattr TCSAFLUSH TCSETSF termios
tcsendbreak (none) TCSBRK int=duration

Figure 3-39.

POSIX calls and IOCTL operations.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Terminal Driver Support Code

IN_ESC, escaped by LNEXT (CTRL-V)
IN_EOF, end of file (CTRL-D)
IN_EOT, line break (NL and others)
cce: count of characters echoed

Bit 7, may be zeroed if ISTRIP is set
-0: Bits 0-6, ASCI| code

PNE 20 <

Figure 3-40. The fields in a character code as it is
placed into the input queue.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Keyboard Driver (1)

42 | 35 | 163 | 170 | 18 | 146 | 38 | 166 | 38 | 166 | 24 | 152 | 57 185
L+ | h+ h- L- | e+ e- R |- Iy |- o+ | o- | SP+ | SP-
54 | 17 | 145 | 182 | 24 | 152 | 19 | 147 | 38 | 166 | 32 | 160 | 28 156
R+ | w+ | w- R- | o+ | o- Mo r- |+ |- d+ | d- CR+ | CR-

Figure 3-41. Scan codes in the input buffer, with corresponding

key actions below, for a line of text entered at the keyboard. L
and R represent the left and right Shift keys. + and - indicate
a key press and a key release. The code for a release is 128
more than the code for a press of the same key.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Keyboard Driver (2)

Key Scan code | “ASCII” | Escape sequence
Home 71 0x101 ESC[H
Up Arrow 72 0x103 ESC[A
Pg Up 73 0x107 ESC[V
— 74 0x10A ESC[S
Left Arrow 75 0x105 ESC[D
5 76 0x109 ESC[G
Right Arrow 77 0x106 ESC[C
+ 78 0x10B ESC[T
End 79 0x102 ESC[Y
Down Arrow 80 0x104 ESC[B
Pg Dn 81 0x108 ESC[U
Ins 82 0x10C ESC|[@

Figure 3-42. Escape codes generated by the numeric keypad.
When scan codes for ordinary keys are translated into ASCII
codes the special keys are assigned “pseudo ASCII” codes
with values greater than OxFF.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Keyboard Driver (3)

Key Purpose SF1 | Process manager process table

F1 Kernel process table SF2 | Signals

F2 | Process memory maps SF3 | File system process table

F3 | Bootimage SF4 | Device/driver mapping

F4 | Process privileges SF5 | Print key mappings

F5 | Boot monitor parameters SF9 | Ethemet statistics (RTL8139 only)

F6 | IRQ hooks and policies CF1 | Show key mappings

F7 | Kernel messages CF3 | Toggle software/hardware console scrolling
F10 | Kernel parameters CF7 | Send SIGQUIT, same effect as CTRL-\
F11 | Timing details (if enabled) CF8 | Send SIGINT, same effect as CTRL-C
F12 | Scheduling queues CF9 | Send SIGKILL, same effect as CTRL-U

Figure 3-43. The function keys detected by func_key().

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Display Driver (1)

numeric
E]I" ll.;'l

call
do_escape

Mot ESC call Mot numeric
do_escape o' collect
numeric
parameters

Figure 3-44. Finite state machine for processing
escape sequences.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Display Driver (2)

Registers Function

10 — 11 Cursor size

12 -13 Start address for drawing screen
14 - 15 Cursor position

Figure 3-45. Some of the 6845’s registers.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

