OPERATING SYSTEMS

DESIGN AND IMPLEMENTATION
Third Edition
ANDREW S. TANENBAUM
ALBERT S. WOODHULL

Chapter 4
Memory Management

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Monoprogramming
without Swapping or Paging

DaFE iz _
Operating Device
system in drivers in ROM
ROM
User
program i
program
User
program
Operating Operating
system in system in
RAM RAM
0
(@) (b) (c)

Figure 4-1. Three simple ways of organizing memory with an
operating system and one user process. Other possibilities
also exist.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multiprogramming with Fixed Partitions (1)

Multiple
input queues 800K
7 Partition 4
700K
Figure 4-2. (a) Fixed
memory partitions with Partition 3
separate input queues
it 400K
for each partition.
Partition 2
200K
1M Partition 1
. 100K
Operating
system 0
(a)

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multiprogramming with Fixed Partitions (2)

FPartition 4

~ Single Partition 3
input queue

Partition 2
Figure 4-2. (b) Fixed
memory partitions with Partition 1

a single input queue. Operating
system

(b)

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (1)

Timg —
% 7/ [iz iz, Wiz vz
/ / 5 C C G 6
7
1 - ; ; . 7/
% 7 H
N a || » V) 222 22
% D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a) (b) (c) (d) (e) (f) (9)

Figure 4-3. Memory allocation changes as processes come Into
memory and leave it. The shaded regions are unused memory.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (2)

B
Figure 4-4. (a) Allocating

______ b

+ Room for growth

r Actually in use

space for a growing data W

segment.

A

______ t |

+ Room for growth

r Actually in use

Operating
system

(a)

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (3)

Figure 4-4. (b) Allocating
space for a growing stack
and a growing data
segment.

B-Program

7%

A-Stack

A-Program

Operating
system

(b)

r Room for growth

r Room for growth

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management with Bitmaps

077/ IR/, e V.

FEAT1000 Plo]s Hls5|3| 4—>|P|8|6| 4|P|14]| 4| —

11111111)
11001111 C
H|18

|

2| +|P|20|6 | 5| P 26| 3| 4| H|29]| 3| X
11111000 / I \ {
E Hole Starts Length FProcess
at 18 2

(b) (c)
Figure 4-5. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The

shaded regions (0 in the bitmap) are free. (b) The corresponding
bitmap. (c) The same information as a list.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management with Linked Lists

Before X terminates After X terminates

(a) A X B becomes A w B

(b) | A X W becomes A W
(c) V/A X B becomes // W B
(d) 7// X % becomes W/////////

Figure 4-6. Four neighbor combinations for the terminating
process, X.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Allocation Algorithms

First fit
Use first hole big enough

Next fit
Use next hole big enough

Best fit
Search list for smallest hole big enough

Worst fit
Search list for largest hole available

Quick fit
Separate lists of commonly requested sizes

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

CPU

Paging (1)

CPU
package

The CPU sends virtual
addresses to the MMU

-
-

e

Pl

Memory
- management
unit

\\

Memory

Disk
controller

X

The MMU sends physical
addresses to the memory

l Bus

Figure 4-7. The position and function of the MMU. Here the MMU
IS shown as being a part of the CPU chip because it commonly Is
nowadays. However, logically it could be a separate chip and

was in years gone by.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Paging (2)

Figure 4-8. The relation between
virtual addresses and physical
memory addresses is given by
the page table.

Virtual
address
space

GOK-64K
S56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
OK-4K

} Virtual page

R = O|E|w]| x| XD]~]] =

N\
%

Physical
memaory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\DK-J,K

Page frame

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Paging (3)

i

[1[1]o]ofofo]ofo[o]ofo]o]1]o]0]

.

15| 000 | O 1
14| 000 0
13| 000 0
121 000 | O
11 111 1
10| 000 0
Figure 4-9. The internal e, 5| 000 %
. table 7| ooo |0
operation of the MMU 6[000 |0
51 oM 1
with 16 4-KB pages. 4[100 1
31 000 1
2 110 |1~ 110 |
1] 001 1
o010 [Zoeentbi

Virtual page = 2 is used
as an index into the
page table

s

A

12-bit offset
copied directly
from input

to output

-

[ofo]1]o

olo|ofo|ofo]o]o]ol1]o]0]

}

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

QOutgoing
physical
address
(24580)

Incoming
virtual
address
(8196)

Page Tables

 Purpose : map virtual pages onto page
frames

 Major issues to be faced
1. The page table can be extremely large
2. The mapping must be fast.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Second-level

page tables
Multilevel Page S
—+—— | table for
1 > [thetop
Tables St
Top-level >
page table
1023@ i. / |
Bits 10 10 12 g 1
PT1 | PT2| Offset 4 -
3 4
(a) 2 -
1 —
0 x\ 1.,
Figure 4-10. (a) A 32-bit
address with two page table : z
4 ———
fields. (b) Two-level page : 7 pages
1 T
0 ~—

tables.
(b)

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Structure of a Page Table Entry

Caching
disabled Moaodified Present/absent

r— /

W Page frame number
]

N\

Referenced Protection

[IFigure 4-11. A typical page table entry.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

TLBs—Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Figure 4-12. A TLB to speed up paging.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Inverted Page Tables

Traditional page
table with an entry
for each of the 252

pages
252 1
256-MB physical
memory has 216
4-KB page frames Hash table
216 _o 216 .4] I |- I]
] |]
Indexed Indexed / \
by virtual by hash on Virtual Page
page virtual page page frame

Figure 4-13. Comparison of a traditional page table with an
Inverted page table.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Page Replacement Algorithms

e Optimal replacement

 Not recently used (NRU) replacement

e First-in, first-out (FIFO) replacement

e Second chance replacement

 Clock page replacement

 Least recently used (LRU) replacement

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Second Chance Replacement

Page loaded first
\ 0 3 7 ! 12 14 15 18
A B C D C o G K

Most recently
T loaded page

A is treated like a
o newly loaded page

Figure 4-14. Operation of second chance. (a) Pages sorted

In FIFO order. (b) Page list if a page fault occurs at time 20

and A has its R bit set. The numbers above the pages are
their loading times.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Clock Page Replacement

When a page fault occurs,
the page the hand is
] 5 pointing to is inspected.

The action taken depends

on the R bit:
R = 0: Evict the page
R =1:Clear R and advance hand

Figure 4-15. The clock page replacement algorithm.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Simulating LRU In Software (1)

Page Page Page Page Page
01 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Qo111 0|01 o(o]|O]|1 o|jojo]|o0O ojojojo
ilo|l0]|0O]|O 1]0]1]1 110101 1|10]|]0]0 1101010
2/ 010]|01]O0 ojojJoj]o 111101 111]0]0 111101
3/]010|01]0 ojojJo]|]oO o(of|O0]O 1111110 1111010

(a) (b) (c) (d) (e)
ofof|O]o0O o I I T s I of1f]11]0 0j1]0]0 oj1|0]0
110|111 oOjo]1]1 ofof|1]0 o|jo]0O]|O ojojoj|o
110|101 Ojo0]|0O]|1 o(o0f|O]O 1111011 1111010
1101010 ojojoj]o 1111110 111]0]0 111110

(f) (9) (h) 0] ()

Figure 4-16. LRU using a matrix when pages are referenced in the
order 0,1,2,3,2,1,0, 3, 2, 3.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Simulating LRU In Software (2)

| 1 1
R bits for l R bits for : R bits for ! R bits for R bits for
pages 0-5, I pages 0-5, | pages 0-5, | pages 0-5, pages 0-5,
clock tick O l clock tick 1 l clock tick 2 l clock tick 3 clock tick 4
| 1 1
ol1]ol1 i 1lolo]1 i 1lol1]o i ololo]|1 1{1|olo
I I I
| 1 1
| | |
o| 10000000 || 11000000 || 11100000 | i]| 11110000 01111000
| 1]
| | |
1 00000000 i 10000000 i 11000000 i 01100000 10110000
| 1 1
| | |
2 10000000 i 01000000 i 00100000 i 00100000 10001000
| 1 1
| 1]
3| 00000000 . 00000000 . 10000000 . 01000000 00100000
| 1]
| 1]
4| 10000000 ! 11000000] 01100000 : 10110000 01011000
| | |
| 1 1
| 1 1
s| 10000000 ! 01000000 ! 10100000 ! 01010000 00101000
| | |
(a) (b) (c) (d) (e)

Figure 4-17. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks are
represented by (a) to (e).

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Working Set Model

w(k,t)

Kk

Figure 4-18. The working set is the set of pages used by the k
most recent memory references. The function w(k, t) is the size of
the working set at time t.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

| ocal versus Global Allocation Policies

Age
AD 10 AD AQ
A s A1 Al
A2 5 A2 A2
A3 4 A3 A3
Ad 6 Ad Ad
A5 3 CABD A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3 CABD
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
C2 5 C2 c2
C3 6 C3 c3
(a) (b) (c)

Figure 4-19. Local versus global page replacement.
(a) Original configuration. (b) Local page replacement.
(c) Global page replacement.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Page Fault Freguency

Page faults/sec

Number of page frames assigned

Figure 4-20. Page fault rate as a function of the
number of page frames assigned.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (1)

Examples of tables saved by a compiler ...

1. The source text being saved for the printed listing (on
batch systems).

2. The symbol table, containing the names and attributes of
variables.

3. The table containing all the integer and floating-point
constants used.

4. The parse tree, containing the syntactic analysis of the
program.

5. The stack used for procedure calls within the compiler.

These will vary in size dynamically during the compile process

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (2)

Virtual address space

Call stack f

} Fres
Address space

allocated to the

Space currently being
parse troa it ‘ } used by the parse tree

Constant table +

Source text +

bumped into the
source text table

Symbol table

A 1 Symbol table has

Figure 4-21. In a one-dimensional address space with growing
tables, one table may bump into another.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

20K
16K -
12K =
Symbol
table
BK
4K
OK
Segment
0

Segmentation (3)

12K

8K

4K

OK

Source
text

Segment
1

OK

Constants

Segment
2

16K

12K

8K

4K

OK

— Parse
tree

Segment
3

12K

8K

4K

OK

Call
stack

Segment
4

Figure 4-22. A segmented memory allows each table to grow or

shrink independently of the other tables.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (4)

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Figure 4-23. Comparison of paging and segmentation.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (4)

Consideration Paging Segmentation
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy

more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

Figure 4-23. Comparison of paging and segmentation.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

DS

Segment 2
(SK)

Segment 3
(8K)

Segment 5
(4K)

R

Implementation of Pure Segmentation

Segment 1
(8K)

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

/ 4K}//A

L

o

Y

Segment 2
(5K)

Segment 6
(4K)

Segment 5
(4K)

Segment 0
(4K)

Segment 7
(5K)

ASH

Segment 2
(5K)

Segment 6
(4K)

Segment 0

(a)

Segment 7
(5K)

A,

(4K)

Segment 0

(b)

Segment 7
(5K)

Segment 2
(5K)

(4K)

Segment 0

(c)

Segment 7
(5K)

(4K)

Segment 0

(d)

(4K)

(&)

Figure 4-24. (a)-(d) Development of checkerboarding.
(e) Removal of the checkerboarding by compaction.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (1)

Bits 13

1

2

Index

/

0=GDTA =LDT

:

Privilege level (0-3)

Figure 4-25. A Pentium selector.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (2)

0: 16-Bit segment I [0: Segment is absent from memory
1: 32-Bit segment 1. Segment is present in memaory
- Privilege level (0-3)
0: Liis in bytes 4 0: Systfaml
1:Liis in pages _ 1: Application
Segment type and protection
Yy Y Y ¥ ﬁ g yp P
7] Limit
Base 24-31 G|D|0 é 16-19 PIDPL|S| Type Base 16-23 4
Base 0-15 Limit 0-15 0
- 32 Bits . Relative

"~ address

Figure 4-26. Pentium code segment descriptor.
Data segments differ slightly.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (3)

Selector

Offset
Descriptor
Base address +
Limit
Other fields
Y

32-Bit linear address

Figure 4-27. Conversion of a (selector, offset)
pair to a linear address.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (4)

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
J—? J—? J—? J—‘L Word ~l ~J
selected ~
1024 T
Entries T
E T Offset
Dir
Page
l A |
Directory entry Page table
points to entry points
page table to word

(b)
Figure 4-28. Mapping of a linear address onto a physical address.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (6)

VUsel Programg -

N\ Typical uses of
7 the levels

Level

Figure 4-29. Protection on the Pentium.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Layout (1)

Upper

| lll,.--" [~
memaory 7 / ”f////A
limit /
A C
A A's child

B B B
(L LA AASLTLLD | L/

A A A

MINIX 3 MINIX 3 MINIX 3
0

(a) (b) (c)

Figure 4-30. Memory allocation (a) Originally. (b) After a fork.

(c) After the child does an exec. The shaded regions are unused
memory. The process is a common I&D one.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Layout (2)

Stack

_ e Stack segment grows downward

i memory T Data segment grows upward
ufE;Eizlk i use (or downward) when BRK
file Text Data + bss | ¢alls are made.
t Header v Text

(a) (b)

Figure 4-31. (a) A program as stored in a disk file. (b) Internal
memory layout for a single process. In both parts of the
figure the lowest disk or memory address is at the bottom and
the highest address is at the top.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Process Manager Data Structures

and Algorithms (1)

Message type Input parameters Reply value

fork (none) Child’s PID, (to child: 0)
exit Exit status (No reply if successful)
wait (none) Status

waitpid Process identifier and flags Status

brk New size New size

exec Pointer to initial stack (No reply if successful)
kill Process identifier and signal Status

alarm Number of seconds to wait Residual time

pause (none) (No reply if successful)
sigaction Signal number, action, old action Status

sigsuspend Signal mask (No reply if successful)
sigpending (none) Status

sigprocmask How, set, old set Status

sigreturn Context Status

getuid (none) Uid, effective uid
getgid (none) Gid, effective gid
getpid (none) PID, parent PID

Figure 4-32. The message types, input parameters, and'r'elply
values used for communicating with the PM.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Process Manager Data Structures

and Algorithms (2)

Message type Input parameters Reply value
setuid New uid Status

setgid New gid Status

setsid New sid Process group
getpgrp New gid Process group

time Pointer to place where current time goes Status

stime Pointer to current time Status

times Pointer to buffer for process and child times | Uptime since boot
ptrace Request, PID, address, data Status

reboot How (halt, reboot, or panic) (No reply if successful)
svretl Request, data (depends upon function) Status

getsysinfo Request, data (depends upon function) Status

getprocnr (none) Proc number
memalloc Size, pointer to address Status

memfree Size, address Status

getpriority Pid, type, value Priority (nice value)
setpriority Pid, type, value Priority (nice value)
gettimeofday (none) Time, uptime

Figure 4-32. The message types, input parameters, and reply
values used for communicating with the PM.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Processes in Memory (1)

Address (hex) Virtual Physical Length

A - Stack| Ox8 OxdO 0x2
210K (0x34800) Data 0 | Oxc8 Ox7
Stack Text 0 Oxc8 0
ex XC
208K (0x34000)
7
22 207K (0x33c00) (b)
Data
203K {0x32c00) Virtual Physical Length
Text Stack| 0x5 OxdO 0x2
200K (0x32000) Data 0 Oxcb Ox4
o™ T Text| 0 | oxc8 | o0x3

(@) (c)

Figure 4-33. (a) A process in memory. (b) Its memory
representation for combined | and D space. (c) Its memory
representation for separate | and D space

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

L 1,

T L™

Ox3dcO0

Processes oy | =

/2. Gap 2/ 03000

0
. ‘— Stack| O0x5 Oxf5 Ox2

3L
31

In Memory (2) B 1
e Virtual Physical Length

0x34800 Data 0 OxfO Ox4

Stack
{proc 1) e — Text o Oxc8 0x3
[i > X
Virtual Physical Length %Gapy/ maee e

Stack| 0x5 OxdO Ox2 (c)
Data
Data 0 Oxch Oxd |—— (proc 1)
Text 0 Oxch Ox3
Ox32c00
Frocess 1 l Text
(a) (shared)

Ox32000

(b}

Figure 4-34. (a) The memory map of a separate | and D space
process, as in the previous figure. (b) The layout in
memory after a second process starts, executing the

same program image with shared text. (c) The memory
map of the second process.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Hole List

PRIVATE struct hole {

struct hole *h_next; /* pointer to next entry on the list */
phys_clicks h_base; /* where does the hole begin? */
phys_clicks h_len; /* how big is the hole? */

} hole[NR_HOLES];

Figure 4-35. The hole list is an array of struct hole.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

FORK System Call

1. Check to see if process table is full.

2. Try to allocate memory for the child's data and stack.
3. Copy the parent’s data and stack to the child’s memory
4. Find a free process slot and copy parent’s slot to it.

5. Enter child’s memory map in process table.
6
Fi
8
9

. Choose a PID for the child.

. Tell kernel and file system about child.

. Report child’s memory map to kernel.

. Send reply messages to parent and child.

Figure 4-36. The steps required to carry out the fork system call.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (1)

1. Check permissions—is the file executable?

2. Read the header to get the segment and total sizes.

3. Fetch the arguments and environment from the caller.

4. Allocate new memory and release unneeded old memory.

5. Copy stack to new memory image.

6. Copy data (and possibly text) segment to new memory image.
[

8

9

. Check for and handle setuid, setgid bits.
. Fix up process table entry.
. Tell kernel that process is now runnable.

Figure 4-37. The steps required to carry out the exec system call.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (2)

\0 a |52 Wl t]s|al|8188 |W]|t a | 8188
EnTirenm flr]s|ul48 {lr]s|ulB184 r{s|u|8184
array f1=|E|M|44 "1 =|E|M]|8B180 =|E|M]|8180
0 O|H|W]|c |40 O|H|W]|c|8176 |O|H|W]| c|8176
| g|W]ec |36 .lglw]|ec|B172 g W0 c|8172
L—,._ flwol!l |32 flw] | |8168 flw] !l |8168
HOME = jusrfast | _T|s|1 |28 [-]w|s|1|s164 [-[w0|s] 1 |s164
] 24 0 8160 0 8160
42 20 8178 B156 8178 8156
0 16 0 g152 1] 8152
Argument 38 12 8174 |8148 8174 |8148
array 34 8 8170 8144 8170 8144
0 3 4 8167 8140 8167 8140
—T g.c 28 0 8164 8136 8164 8136
— fc envp 8156 8132
—_— | argyv 8136 8128
—t s arge 4 8124
return 8120

(a) (b) (c) (d)

Figure 4-38. (a) The arrays passed to execve. (b) The stack built
by execve. (c) The stack after relocation by the PM. (d) The
stack as it appears to main at start of execution.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (3)

push ecx | push environ

push edx | push argv

push eax | push argc

call _main | main(argc, argv, envp)
push eax | push exit status

call _exit

hit | force a trap if exit fails

Figure 4-39. The key part of crtso,
the C run-time, start-off routine.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Handling (1)

Preparation: program code prepares for possible signal.
Response: signal is received and action is taken.
Cleanup: restore normal operation of the process.

Figure 4-40. Three phases of dealing with signals.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Handling (2)

struct sigaction {
__sighandler_t sa_handler; /* SIG_DFL, SIG_IGN, SIG_MESS,
or pointer to function */
sigset_t sa_mask; /* signals to be blocked during handler */
int sa_flags; /* special flags */

}

Figure 4-41. The sigaction structure.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Description Generated by
- I SIGHUP Hangup KILL system call
S I g n a SIGINT Interrupt TTY
. SIGQUIT Quit TTY
H a,n d I I n g SIGILL lllegal instruction Kernel (%)
SIGTRAP Trace trap Kernel (M)
(3) SIGABRT Abnormal termination TTY
SIGFPE Floating point exception Kernel (*)
SIGKILL Kill (cannot be caught or ignored) KILL system call
SIGUSR1 User-defined signal # 1 Not supported
SIGSEGV Segmentation violation Kernel (*)
SIGUSR2 User defined signal # 2 Not supported
SIGPIPE Write on a pipe with noonetoreadit | FS

Figure 4-42. Signals defined by POSIX and MINIX 3. Signals
Indicated by (*) depend on hardware support. Signals
marked (M) not defined by POSIX, but are defined by MINIX
3 for compatibility with older programs. Signals kernel are
MINIX 3 specific sighals generated by the kernel, and used to
Inform system processes about system events. Several
obsolete names and synonyms are not listed here.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling

(4)

Signal Description Generated by
SIGALRM Alarm clock, timeout PM
SIGTERM Software termination signal from Kkill KILL system call
SIGCHLD Child process terminated or stopped | PM
SIGCONT Continue if stopped Not supported
SIGSTOP Stop signall Not supported
SIGTSTP Interactive stop signal Not supported
SIGTTIN Background process wants to read Not supported
SIGTTOU Background process wants to write Not supported
SIGKMESS | Kernel message Kernel
SIGKSIG Kernel signal pending Kernel
SIGKSTOP | Kernel shutting down Kernel

Figure 4-42. Signals defined by POSIX and MINIX 3. Signals
Indicated by (*) depend on hardware support. Signals
marked (M) not defined by POSIX, but are defined by MINIX
3 for compatibility with older programs. Signals kernel are
MINIX 3 specific sighals generated by the kernel, and used to
Inform system processes about system events. Several
obsolete names and synonyms are not listed here.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Het addr

Local vars
(process)

Signal
Handling (5)

Stackframe
{CPU regs)
(original)

Before

(a)

Ret addr Ret addr Ret addr
Local vars Local vars Local vars
(process) (process) (process)
Stacktrame Stacktrame
{CPU regs) (CPU regs)
(original) (ariginal)
Ret addr 2 Ret addr 2
Sigframe Local vars
structure {Sigreturn)
Ret addr 1
Local vars
(handler)
Stackframe Stackframe Stackframe
({CPU regs) (CPU regs) (CPU regs)
(modified, (modified, (original)
ip = handler) ip = handler)
Handler Sigreturn Back to normal
executing executing
(b) (c) (d)

Stack

Process
table

Figure 4-43. A process’ stack (above) and its stackframe in the
process table (below) corresponding to phases in handling a
signhal. (a) State as process is taken out of execution. (b)
State as handler begins execution. (c) State while sigreturn is
executing. (d) State after sigreturn completes execution.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Initialization of Process Manager

cs ds text data bss stack
0000800 0005800 19552 3140 30076 0 kernel
0100000 0104c00 19456 2356 48612 1024 pm
0111800 011c400 43216 5912 6224364 2048 fs
070e000 070f400 4352 616 4696 131072 rs

Figure 4-44. Boot monitor display of memory usage of first few
system image components.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Implementation of EXIT

waing (&) (1) (&) () (&5

Exiting

(@) (b)

Figure 4-45. (a) The situation as process 12 is about to exit.
(b) The situation after it has exited.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Implementation of EXEC

Wl t
Environment sja|/|r
array sjlul/|=
0 ot]| 40 0 E(M|[C]|H
| slal/|r]| 36 | W1 f |0
F., s|lul/ =] 32 ;,., hls]|.|s
HOME = /usrfast ElmlolH]| 28 HOME = /usr/ast olhls]|/
W1 f]W0)] 24 n|i|b|/
hls s | 20 0
0 16 _ 40
Argument pe e 53‘3?3! ot 0
array 0 8 array 37
0 25 4 0 32
—t = {1 20 0 —t 1 24
— s.sh —1> s.sh
—= /bin/sh
(a) (b)

Figure 4-46. (a) Arrays passed to execve and the stack created
when a script is executed. (b) After processing by
patch_stack, the arrays and the stack look like this. The
script name is passed to the program which interprets the
script.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

52
48
44
40
36
32
28
24
20
16
12

Signal Handling (1)

System call Purpose

sigaction Modify response to future signal

sigprocmask Change set of blocked signals

kill Send signal to another process
alarm Send ALBM signal to self after delay
pause Suspend self until future signal

sigsuspend Change set of blocked signals, then PAUSE

sigpending Examine set of pending (blocked) signals

sigreturn Clean up after signal handler

Figure 4-47. System calls relating to signals.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Layer

Handler
for ALRM

&\\ 2

Signal
Handling (2)

Figure 4-48. Messages for an alarm. The most important are: (1)
User does alarm. (4) After the set time has elapsed, the
signal arrives. (7) Handler terminates with call to sigreturn.
See text for details.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

! Processor
/ A registers
£ (64 bytes)

Signal ’
Handling (3) e

—
—
—
—

) Pointer to sigcontext
Sigframe

structure

Return address

Frame pointer

N Pointer to sigcontext

A Code (floating point)

\ Signal number

\, | Address of sigreturn

Figure 4-49. The sigcontext and sigframe structures pushed on
the stack to prepare for a signal handler. The processor
registers are a copy of the stackframe used during a context
switch.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (1)

Call Function

time Get current real time and uptime in seconds

stime | Set the real time clock

times | Get the process accounting times

Figure 4-50. Three system calls involving time.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (2)

System Call Description

getuid Return real and effective UID

getgid Return real and effective GID

getpid Return PIDs of process and its parent
setuid Set caller’s real and effective UID
setgid Set caller’s real and effective GID
setsid Create new session, return PID
getpgrp Return ID of process group

Figure 4-51. The system calls supported in servers/pm/getset.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (3)

System Call Description
do_allocmem Allocate a chunk of memory
do_freemem Deallocate a chunk of memory
do_getsysinfo Get info about PM from kernel
do_getprocnr Get index to proc table from PID or name
do_reboot Kill all processes, tell FS and kernel
do_getsetpriority | Get or set system priority
do_svrctrl Make a process into a server

Figure 4-52. Special-purpose MINIX 3 system calls in
servers/pm/misc.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (4)

Command Description
T_STOP Stop the process
T_OK Enable tracing by parent for this process
T_GETINS Return value from text (instruction) space

T_GETDATA | Return value from data space
T_GETUSER | Return value from user process table

T_SETINS Set value in instruction space
T_SETDATA | Setvalue in data space
T_SETUSER | Setvalue in user process table
T_RESUME Resume execution

T_EXIT Exit

T_STEP Set trace bit

Figure 4-53. Debugging commands supported by
servers/pm/trace.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management Utllities

Three entry points of alloc.c
1. alloc_mem —request a block of memory of given size

2. free_mem - return memory that is no longer needed
3. mem_init — initialize free list when PM starts running

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

	OPERATING SYSTEMS�DESIGN AND IMPLEMENTATION�Third Edition�ANDREW S. TANENBAUM�ALBERT S. WOODHULL��Chapter 4�Memory Management
	Monoprogramming �without Swapping or Paging
	Multiprogramming with Fixed Partitions (1)
	Multiprogramming with Fixed Partitions (2)
	Swapping (1)
	Swapping (2)
	Swapping (3)
	Memory Management with Bitmaps
	Memory Management with Linked Lists
	Memory Allocation Algorithms
	Paging (1)
	Paging (2)
	Paging (3)
	Page Tables
	Multilevel Page �Tables
	Structure of a Page Table Entry
	TLBs—Translation Lookaside Buffers
	Inverted Page Tables
	Page Replacement Algorithms
	Second Chance Replacement
	Clock Page Replacement
	Simulating LRU in Software (1)
	Simulating LRU in Software (2)
	The Working Set Model
	Local versus Global Allocation Policies
	Page Fault Frequency
	Segmentation (1)
	Segmentation (2)
	Segmentation (3)
	Segmentation (4)
	Segmentation (4)
	Implementation of Pure Segmentation
	Segmentation with Paging: �The Intel Pentium (1)
	Segmentation with Paging: �The Intel Pentium (2)
	Segmentation with Paging: �The Intel Pentium (3)
	Segmentation with Paging: �The Intel Pentium (4)
	Segmentation with Paging: �The Intel Pentium (6)
	Memory Layout (1)
	Memory Layout (2)
	Process Manager Data Structures �and Algorithms (1)
	Process Manager Data Structures �and Algorithms (2)
	Processes in Memory (1)
	Processes �in Memory (2)
	The Hole List
	FORK System Call
	EXEC System Call (1)
	EXEC System Call (2)
	EXEC System Call (3)
	Signal Handling (1)
	Signal Handling (2)
	Signal Handling (3)
	Signal Handling (4)
	Signal Handling (5)
	Initialization of Process Manager
	Implementation of EXIT
	Implementation of EXEC
	Signal Handling (1)
	Signal Handling (2)
	Signal Handling (3)
	Other System Calls (1)
	Other System Calls (2)
	Other System Calls (3)
	Other System Calls (4)
	Memory Management Utilities

