
Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION

Third Edition
ANDREW S. TANENBAUM
ALBERT S. WOODHULL

Chapter 4
Memory Management

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Monoprogramming
without Swapping or Paging

Figure 4-1. Three simple ways of organizing memory with an
operating system and one user process. Other possibilities

also exist.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multiprogramming with Fixed Partitions (1)

Figure 4-2. (a) Fixed
memory partitions with
separate input queues
for each partition.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multiprogramming with Fixed Partitions (2)

Figure 4-2. (b) Fixed
memory partitions with
a single input queue.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (1)

Figure 4-3. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (2)

Figure 4-4. (a) Allocating
space for a growing data
segment.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Swapping (3)

Figure 4-4. (b) Allocating
space for a growing stack
and a growing data
segment.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management with Bitmaps

Figure 4-5. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The

shaded regions (0 in the bitmap) are free. (b) The corresponding
bitmap. (c) The same information as a list.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management with Linked Lists

Figure 4-6. Four neighbor combinations for the terminating
process, X.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Allocation Algorithms
• First fit

Use first hole big enough
• Next fit

Use next hole big enough
• Best fit

Search list for smallest hole big enough
• Worst fit

Search list for largest hole available
• Quick fit

Separate lists of commonly requested sizes

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Paging (1)

Figure 4-7. The position and function of the MMU. Here the MMU
is shown as being a part of the CPU chip because it commonly is

nowadays. However, logically it could be a separate chip and
was in years gone by.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Paging (2)

Figure 4-8. The relation between
virtual addresses and physical
memory addresses is given by
the page table.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Paging (3)

Figure 4-9. The internal
operation of the MMU
with 16 4-KB pages.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Page Tables

• Purpose : map virtual pages onto page
frames

• Major issues to be faced
1. The page table can be extremely large
2. The mapping must be fast.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Multilevel Page
Tables

Figure 4-10. (a) A 32-bit
address with two page table
fields. (b) Two-level page
tables.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Structure of a Page Table Entry

�Figure 4-11. A typical page table entry.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

TLBs—Translation Lookaside Buffers

Figure 4-12. A TLB to speed up paging.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Inverted Page Tables

Figure 4-13. Comparison of a traditional page table with an
inverted page table.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Page Replacement Algorithms

• Optimal replacement
• Not recently used (NRU) replacement
• First-in, first-out (FIFO) replacement
• Second chance replacement
• Clock page replacement
• Least recently used (LRU) replacement

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Second Chance Replacement

Figure 4-14. Operation of second chance. (a) Pages sorted
in FIFO order. (b) Page list if a page fault occurs at time 20
and A has its R bit set. The numbers above the pages are

their loading times.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Clock Page Replacement

Figure 4-15. The clock page replacement algorithm.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Simulating LRU in Software (1)

Figure 4-16. LRU using a matrix when pages are referenced in the
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Simulating LRU in Software (2)

Figure 4-17. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks are

represented by (a) to (e).

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Working Set Model

Figure 4-18. The working set is the set of pages used by the k
most recent memory references. The function w(k, t) is the size of

the working set at time t.

k

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Local versus Global Allocation Policies

Figure 4-19. Local versus global page replacement.
(a) Original configuration. (b) Local page replacement.

(c) Global page replacement.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Page Fault Frequency

Figure 4-20. Page fault rate as a function of the
number of page frames assigned.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (1)

Examples of tables saved by a compiler …

1. The source text being saved for the printed listing (on
batch systems).

2. The symbol table, containing the names and attributes of
variables.

3. The table containing all the integer and floating-point
constants used.

4. The parse tree, containing the syntactic analysis of the
program.

5. The stack used for procedure calls within the compiler.

These will vary in size dynamically during the compile process

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (2)

Figure 4-21. In a one-dimensional address space with growing
tables, one table may bump into another.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (3)

Figure 4-22. A segmented memory allows each table to grow or
shrink independently of the other tables.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (4)

Figure 4-23. Comparison of paging and segmentation.
. . .

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation (4)

Figure 4-23. Comparison of paging and segmentation.

. . .

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Implementation of Pure Segmentation

Figure 4-24. (a)-(d) Development of checkerboarding.
(e) Removal of the checkerboarding by compaction.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (1)

Figure 4-25. A Pentium selector.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (2)

Figure 4-26. Pentium code segment descriptor.
Data segments differ slightly.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (3)

Figure 4-27. Conversion of a (selector, offset)
pair to a linear address.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (4)

Figure 4-28. Mapping of a linear address onto a physical address.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Segmentation with Paging:
The Intel Pentium (6)

Figure 4-29. Protection on the Pentium.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Layout (1)

Figure 4-30. Memory allocation (a) Originally. (b) After a fork.
(c) After the child does an exec. The shaded regions are unused

memory. The process is a common I&D one.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Layout (2)

Figure 4-31. (a) A program as stored in a disk file. (b) Internal
memory layout for a single process. In both parts of the

figure the lowest disk or memory address is at the bottom and
the highest address is at the top.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Process Manager Data Structures
and Algorithms (1)

Figure 4-32. The message types, input parameters, and reply
values used for communicating with the PM.

. . .

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Process Manager Data Structures
and Algorithms (2)

Figure 4-32. The message types, input parameters, and reply
values used for communicating with the PM.

. . .

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Processes in Memory (1)

Figure 4-33. (a) A process in memory. (b) Its memory
representation for combined I and D space. (c) Its memory

representation for separate I and D space

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Processes
in Memory (2)

Figure 4-34. (a) The memory map of a separate I and D space
process, as in the previous figure. (b) The layout in
memory after a second process starts, executing the

same program image with shared text. (c) The memory
map of the second process.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

The Hole List

Figure 4-35. The hole list is an array of struct hole.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

FORK System Call

Figure 4-36. The steps required to carry out the fork system call.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (1)

Figure 4-37. The steps required to carry out the exec system call.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (2)

Figure 4-38. (a) The arrays passed to execve. (b) The stack built
by execve. (c) The stack after relocation by the PM. (d) The

stack as it appears to main at start of execution.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

EXEC System Call (3)

Figure 4-39. The key part of crtso,
the C run-time, start-off routine.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Handling (1)

Figure 4-40. Three phases of dealing with signals.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Handling (2)

Figure 4-41. The sigaction structure.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling

(3)

Figure 4-42. Signals defined by POSIX and MINIX 3. Signals
indicated by (*) depend on hardware support. Signals
marked (M) not defined by POSIX, but are defined by MINIX
3 for compatibility with older programs. Signals kernel are
MINIX 3 specific signals generated by the kernel, and used to
inform system processes about system events. Several
obsolete names and synonyms are not listed here.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling

(4)

Figure 4-42. Signals defined by POSIX and MINIX 3. Signals
indicated by (*) depend on hardware support. Signals
marked (M) not defined by POSIX, but are defined by MINIX
3 for compatibility with older programs. Signals kernel are
MINIX 3 specific signals generated by the kernel, and used to
inform system processes about system events. Several
obsolete names and synonyms are not listed here.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling (5)

Figure 4-43. A process’ stack (above) and its stackframe in the
process table (below) corresponding to phases in handling a
signal. (a) State as process is taken out of execution. (b)
State as handler begins execution. (c) State while sigreturn is
executing. (d) State after sigreturn completes execution.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Initialization of Process Manager

Figure 4-44. Boot monitor display of memory usage of first few
system image components.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Implementation of EXIT

Figure 4-45. (a) The situation as process 12 is about to exit.
(b) The situation after it has exited.

(a) (b)

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Implementation of EXEC

Figure 4-46. (a) Arrays passed to execve and the stack created
when a script is executed. (b) After processing by
patch_stack, the arrays and the stack look like this. The
script name is passed to the program which interprets the
script.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal Handling (1)

Figure 4-47. System calls relating to signals.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling (2)

Figure 4-48. Messages for an alarm. The most important are: (1)
User does alarm. (4) After the set time has elapsed, the
signal arrives. (7) Handler terminates with call to sigreturn.
See text for details.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Signal
Handling (3)

Figure 4-49. The sigcontext and sigframe structures pushed on
the stack to prepare for a signal handler. The processor
registers are a copy of the stackframe used during a context
switch.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (1)

Figure 4-50. Three system calls involving time.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (2)

Figure 4-51. The system calls supported in servers/pm/getset.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (3)

Figure 4-52. Special-purpose MINIX 3 system calls in
servers/pm/misc.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Other System Calls (4)

Figure 4-53. Debugging commands supported by
servers/pm/trace.c.

Tanenbaum & Woodhull, Operating Systems: Design and Implementation, (c) 2006 Prentice-Hall, Inc. All rights reserved. 0-13-142938-8

Memory Management Utilities

Three entry points of alloc.c

1. alloc_mem – request a block of memory of given size
2. free_mem – return memory that is no longer needed
3. mem_init – initialize free list when PM starts running

	OPERATING SYSTEMS�DESIGN AND IMPLEMENTATION�Third Edition�ANDREW S. TANENBAUM�ALBERT S. WOODHULL��Chapter 4�Memory Management
	Monoprogramming �without Swapping or Paging
	Multiprogramming with Fixed Partitions (1)
	Multiprogramming with Fixed Partitions (2)
	Swapping (1)
	Swapping (2)
	Swapping (3)
	Memory Management with Bitmaps
	Memory Management with Linked Lists
	Memory Allocation Algorithms
	Paging (1)
	Paging (2)
	Paging (3)
	Page Tables
	Multilevel Page �Tables
	Structure of a Page Table Entry
	TLBs—Translation Lookaside Buffers
	Inverted Page Tables
	Page Replacement Algorithms
	Second Chance Replacement
	Clock Page Replacement
	Simulating LRU in Software (1)
	Simulating LRU in Software (2)
	The Working Set Model
	Local versus Global Allocation Policies
	Page Fault Frequency
	Segmentation (1)
	Segmentation (2)
	Segmentation (3)
	Segmentation (4)
	Segmentation (4)
	Implementation of Pure Segmentation
	Segmentation with Paging: �The Intel Pentium (1)
	Segmentation with Paging: �The Intel Pentium (2)
	Segmentation with Paging: �The Intel Pentium (3)
	Segmentation with Paging: �The Intel Pentium (4)
	Segmentation with Paging: �The Intel Pentium (6)
	Memory Layout (1)
	Memory Layout (2)
	Process Manager Data Structures �and Algorithms (1)
	Process Manager Data Structures �and Algorithms (2)
	Processes in Memory (1)
	Processes �in Memory (2)
	The Hole List
	FORK System Call
	EXEC System Call (1)
	EXEC System Call (2)
	EXEC System Call (3)
	Signal Handling (1)
	Signal Handling (2)
	Signal Handling (3)
	Signal Handling (4)
	Signal Handling (5)
	Initialization of Process Manager
	Implementation of EXIT
	Implementation of EXEC
	Signal Handling (1)
	Signal Handling (2)
	Signal Handling (3)
	Other System Calls (1)
	Other System Calls (2)
	Other System Calls (3)
	Other System Calls (4)
	Memory Management Utilities

